满分5 > 高中数学试题 >

设a>0,函数f(x)=x2+a|lnx-1|. (Ⅰ)当a=2时,求函数f(x...

设a>0,函数f(x)=x2+a|lnx-1|.
(Ⅰ)当a=2时,求函数f(x)的单调增区间;
(Ⅱ)若x∈[1,+∞)时,不等式f(x)≥a恒成立,实数a的取值范围.
(1)由题意知当0<x≤e时,,f(x)在(1,e]内单调递增.当x≥e时,恒成立,故f(x)在[e,+∞)内单调递增.由此可知f(x)的单调增区间. (2)当x≥e时,f(x)=x2+alnx-a,(x≥e),f(x)在[e,+∞)上增函数.当1≤x<e时,f(x)=x2-alnx+a,(1≤x<e)由此可求出答案. 【解析】 (1)当a=2时,f(x)=x2+2|lnx-1| =(2分) 当0<x≤e时,, f(x)在(1,e]内单调递增; 当x≥e时,恒成立, 故f(x)在[e,+∞)内单调递增; ∴f(x)的单调增区间为(1,+∞).(6分) (2)①当x≥e时,f(x)=x2+alnx-a, (x≥e)∵a>0, ∴f′(x)>0恒成立,∴f(x)在[e,+∞)上增函数. 故当x=e时,ymin=f(e)=e2.(8分) ②当1≤x<e时,f(x)=x2-alnx+a, (1≤x<e) 当,即a≥2e2时, f′(x)在x∈(1,e)进为负数, 所以f(x)在区间[1,e]上为减函数, 故当x=e时,ymin=f(e)=e2.(14分) 所以函数y=f(x)的最小值为 . 由条件得此时0<a≤2; 或, 此时2<a≤2e;或,此时无解. 综上,0<a≤2e.(16分)
复制答案
考点分析:
相关试题推荐
从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.
查看答案
已知动点P到定直线l:x=2manfen5.com 满分网的距离与点P到定点Fmanfen5.com 满分网之比为manfen5.com 满分网
(1)求动点P的轨迹c的方程;
(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k1、k2,问k1•k2是否为定值?
(3)若点M为圆O:x2+y2=4上任意一点(不在x轴上),过M作圆O的切线,交直线l于点Q,问MF与OQ是否始终保持垂直关系?
查看答案
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.
为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?
查看答案
如图,在三棱柱ABC-A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点,AB1与A1B的交点为O.
(1)求证:CD∥平面A1EB;
(2)求证:AB1⊥平面A1EB.

manfen5.com 满分网 查看答案
已知:0<α<manfen5.com 满分网<β<π,cos(β-manfen5.com 满分网)=manfen5.com 满分网,sin(α+β)=manfen5.com 满分网
(1)求sin2β的值;
(2)求cos(α+manfen5.com 满分网)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.