满分5 >
高中数学试题 >
若,则( ) A.a>1,b>0 B.a>1,b<0 C.0<a<1,b>0 D...
若
,则( )
A.a>1,b>0
B.a>1,b<0
C.0<a<1,b>0
D.0<a<1,b<0
考点分析:
相关试题推荐
设集合U={1,2,3,4},A={2,3},B={1},则A∩(C
UB)等于( )
A.{2}
B.{3}
C.φ
D.{2,3}
查看答案
设a>0,函数f(x)=x
2+a|lnx-1|.
(Ⅰ)当a=2时,求函数f(x)的单调增区间;
(Ⅱ)若x∈[1,+∞)时,不等式f(x)≥a恒成立,实数a的取值范围.
查看答案
从数列{a
n}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{a
n}的一个子数列.设数列{a
n}是一个首项为a
1、公差为d(d≠0)的无穷等差数列.
(1)若a
1,a
2,a
5成等比数列,求其公比q.
(2)若a
1=7d,从数列{a
n}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{a
n}的无穷等比子数列,请说明理由.
(3)若a
1=1,从数列{a
n}中取出第1项、第m(m≥2)项(设a
m=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{a
n}的无穷等比子数列,请说明理由.
查看答案
已知动点P到定直线l:x=2
的距离与点P到定点F
之比为
.
(1)求动点P的轨迹c的方程;
(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k
1、k
2,问k
1•k
2是否为定值?
(3)若点M为圆O:x
2+y
2=4上任意一点(不在x轴上),过M作圆O的切线,交直线l于点Q,问MF与OQ是否始终保持垂直关系?
查看答案
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.
为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数y=f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?
查看答案