(1)要证AB⊥CD,先证AB⊥面ACD,在其展成的平面图形中A1B⊥A1D,A2B⊥A2C,从而得到AB⊥AC,AB⊥AD,可得线面垂直,即可得线线垂直.
(2)要求AC与平面BCD所成角的正弦值,首先根据题意求出四面体ABCD的体积与S△BCD=36,再根据等体积法得到VB-ACD=VA-BCD,进而得到点A到平面BCD的距离,即得到答案.
【解析】
(I)证明:因为A1A2A3D为直角梯形,
所以A1B⊥A1D,A2B⊥A2C.
即在第二个图中,AB⊥AC,AB⊥AD.
又因为AC∩AD=A,
∴AB⊥面ACD.
∵CD⊂面ACD,
∴AB⊥CD.
(II)在第一个图中,作DE⊥A2A3于E,
∵A1A2=8,∴DE=8,
又∵A1D=A3D=10,
∴EA3=6,∴A2A3=10+6=16.
而A2C=A3C,∴A2C=8,即第二个图中AC=8,AD=10.
由A1A2=8,A1B=A2B,可得第二个图中AB=4.
所以,
由(I)知,AB⊥面ACD,所以.
设点A到平面BCD得距离为h,
由右边图象可得:-=36.
因为VB-ACD=VA-BCD,
所以,所以h=.
设AC与平面BCD所成角为α,所以sinα==.