(I)利用效率低数量积公式求出f(x);利用三角函数的二倍角公式化简f(x);利用对称轴对应的函数值是最值;列出方程求出ω,求出f(x);令整体角在[]上,求出x的范围即函数的递增区间.
(II)先求出角A,利用三角形的面积公式列出方程求出c;利用三角形的余弦定理求出a.
【解析】
(I))f(x)=sinωxcosωx-
=
=
当x=即
∵0<ω<2∴ω=1
∴
-+2kπ
解得kπ-
所以f(x)d的递增区间为
(II)
在△ABC中,0<A<π,
∴A+
∴A=
由S△ABC=,b=1得c=4
由余弦定理得a2=42+12-2×4×1cos60°=13
故a=