满分5 > 高中数学试题 >

已知函数f(x)=,把方程f(x)-x=0的根按从小到大的顺序排成一个数列,则该...

已知函数f(x)=manfen5.com 满分网,把方程f(x)-x=0的根按从小到大的顺序排成一个数列,则该数列的前n项和为( )
A.Sn=2n-1(n∈N+
B.Sn=manfen5.com 满分网(n∈N+
C.Sn=n-1(n∈N+
D.Sn=2n-1(n∈N+
函数y=f(x)与y=x在(0,1],(1,2],(2,3],(3,4],…,(n,n+1]上的交点依次为(0,0),(1,1),(2,2),(3,3),(4,4),…,(n+1,n+1).即方程f(x)-x=0在(2,3],(3,4],…,(n,n+1]上的根依次为3,4,…n+1.方程f(x)-x=0的根按从小到大的顺序排列所得数列为0,1,2,3,4,…,可得数列的前n项和. 【解析】 当0<x≤1时,有-1<x-1<0,则f(x)=f(x-1)+1=2x-1, 当1<x≤2时,有0<x-1≤1,则f(x)=f(x-1)+1=2x-2+1, 当2<x≤3时,有1<x-1≤2,则f(x)=f(x-1)+1=2x-3+2, 当3<x≤4时,有2<x-1≤3,则f(x)=f(x-1)+1=2x-4+3, 以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x-1)+1=2x-n-1+n, 所以,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,2), 由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点. 然后①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x-1和y=x的图象, 取x≤0的部分,可见它们有且仅有一个交点(0,0). 即当x≤0时,方程f(x)-x=0有且仅有一个根x=0. ②取①中函数f(x)=2x-1和y=x图象-1<x≤0的部分,再同时向上和向右各平移一个单位, 即得f(x)=2x-1和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1). 即当0<x≤1时,方程f(x)-x=0有且仅有一个根x=1. ③取②中函数f(x)=2x-1和y=x在0<x≤1上的图象,继续按照上述步骤进行, 即得到f(x)=2x-2+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2). 即当1<x≤2时,方程f(x)-x=0有且仅有一个根x=2. ④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1). 即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1. 综上所述方程f(x)-x=0的根按从小到大的顺序排列所得数列为: 0,1,2,3,4,…, ∴该数列的前n项和,n∈N+. 故选B.
复制答案
考点分析:
相关试题推荐
已知实数a满足方程:(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y2=-4x的焦点到动点(a,b)所构成轨迹上点的距离的最大值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知f(x)=sin(ωx+manfen5.com 满分网)(ω>0)的图象与x轴两相邻交点间的距离为manfen5.com 满分网,要得到y=f(x)的图象只须把f(x)=sin(ωx+manfen5.com 满分网)的图象( )
A.向左平移manfen5.com 满分网个单位
B.向右平移manfen5.com 满分网个单位
C.向左平移manfen5.com 满分网个单位
D.向右平移manfen5.com 满分网个单位
查看答案
曲线y=manfen5.com 满分网x2-3lnx在点A(1,f(1)处的切线与坐标轴围成的封闭图形的面积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
2010年上海世博会期间,A、B、C、D四名志愿者分别从事翻译、导游、礼仪、司机四项工作,则A不从事翻译且B不从事导游的不同组合方案有( )
A.6种
B.8种
C.14种
D.24种
查看答案
设x,y满足约束条件manfen5.com 满分网,若目标函数z=manfen5.com 满分网最小值为1,则a的值为( )
A.0
B.1
C.manfen5.com 满分网
D.3
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.