登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点...
如图所示,正方形AA
1
D
1
D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD
1
∥平面A
1
DE;
(2)求证:D
1
E⊥A
1
D;
(3)在线段AB上是否存在点M,使二面角D
1
-MC-D的大小为
?若存在,求出AM的长;若不存在,请说明理由.
(1)O是AD1的中点,连接OE,由中位线定理可得EO∥BD1,再由线面平行的判定定理可得BD1∥平面A1DE; (2)由正方形AA1D1D与矩形ABCD所在平面互相垂直,根据面面垂直的性质定理可得AB⊥平面ADD1A1,进而线线面垂直的性质定理得到AB⊥A1D,结合A1D⊥AD1及线面垂直的判定定理,可得A1D⊥平面AD1E,进而D1E⊥A1D; (3)以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,设M(1,y,0)(0≤y≤2),分别求出平面D1MC的法向量和平面MCD的一个法向量,根据二面角D1-MC-D的大小为,结合向量夹角公式,构造关于m的方程,解方程可得M占的坐标,进而求出AM长. 证明:(1)四边形ADD1A1为正方形,O是AD1的中点,点E为AB的中点,连接OE. ∴EO为△ABD1的中位线∴EO∥BD1…(2分) 又∵BD1⊂平面A1DE,OB⊂平面A1DE∴BD1∥平面A1DE …(4分) (2)由已知可得:AE⊥平面ADD1A1,A1D⊂平面ADD1A1 ∴AE⊥A1D, 又∵A1D⊥AD1,AE∩AD1=A ∴A1D⊥平面AD1E,D1E⊂平面AD1E ∴A1D⊥D1E….(4分) 【解析】 (3)由题意可得:D1D⊥平面ABCD,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则D(0,0,0),C(0,2,0),A1(1,0,1),D1(0,0,1), 设M(1,y,0)(0≤y≤2),∵ 设平面D1MC的法向量为n1=(x,y,z)则,得 取D1MC是平面D1MC的一个法向量,而平面MCD的一个法向量为n2=(0,0,1)要使二面角D1-MC-D的大小为, 而 解得:,当AM=时,二面角D1-MC-D的大小为…(6分)
复制答案
考点分析:
相关试题推荐
一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片.
(Ⅰ)从盒子中依次抽取两次卡片,每次抽取一张,取出的卡片不放回,求两次取到的卡片的数字都为奇数或偶数的概率;
(Ⅱ)若从盒子中有放回的抽取3次卡片,每次抽取一张,求恰有两次取到卡片的数字为奇数的概率;
(III)从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到记有奇数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望.
查看答案
已知函数
的最小正周期为π.
(I) 求ω的值;
(II)求函数f(x)在区间
的取值范围.
查看答案
给出定义:若m-
<x≤m+
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
];
②函数y=f(x)的图象关于直线x=
(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-
,
]上是增函数.
其中正确的命题的序号
.
查看答案
已知点P(x,y)满足条件
(k为常数),若z=x+3y的最大值为8,则k=
.
查看答案
如图,⊙O中的弦CD与直径AB相交于点E,M为AB延长线上一点,MD为⊙O的切线,D为切点,若AE=2,DE=4,CE=3,DM=4,则OB=
,MB=
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.