一射击运动员进行飞碟射击训练,每一次射击命中飞碟的概率p与运动员离飞碟的距离s(米)成反比,每一个飞碟飞出后离运动员的距离s(米)与飞行时间t(秒)满足s=15(t+1)(0≤t≤4),每个飞碟允许该运动员射击两次(若第一次射击命中,则不再进行第二次射击).该运动员在每一个飞碟飞出0.5秒时进行第一次射击,命中的概率为
,当第一次射击没有命中飞碟,则在第一次射击后0.5秒进行第二次射击,子弹的飞行时间忽略不计.
(1)在第一个飞碟的射击训练时,若该运动员第一次射击没有命中,求他第二次射击命中飞碟的概率;
(2)求第一个飞碟被该运动员命中的概率;
(3)若该运动员进行三个飞碟的射击训练(每个飞碟是否被命中互不影响),求他至少命中两个飞碟的概率.
考点分析:
相关试题推荐
如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图2所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.
(1)求直线PC与平面PAB所成的角的大小;
(2)求二面角P-AC-B的大小的余弦值.
查看答案
已知
.
(1)求tanα的值;
(2)求
的值.
查看答案
(几何证明选讲选做题) 如图,半径为5的圆O的两条弦AD和BC相交于点P,OD⊥BC,P为AD的中点,BC=6,则弦AD的长度为
.
查看答案
已知直线l的参数方程为
(参数t∈R),圆C的参数方程为
(参数θ∈[0,2π]),则直线l被圆C所截得的弦长为
.
查看答案
已知
的展开式中第5项的系数与第3项的系数比为56:3,则该展开式中x
2的系数
.
查看答案