满分5 > 高中数学试题 >

如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=1,AA1=....

如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=1,AA1=manfen5.com 满分网
(1)求证:BC1∥平面A1DC;
(2)求二面角D-A1C-A的大小.

manfen5.com 满分网
(I)连接AC1交A1C于点G,连接DG,在正三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,则AC=GC1,而AD=DB,则DG∥BC1,DG⊂平面A1DC,BC1⊄平面A1DC,根据线面平行的判定定理可知BC1∥平面A1DC. (II)过点D作DE⊥AC交AC于E,过点D作DF⊥A1C交A1C于F,连接EF,而平面ABC⊥面平ACC1A1,DE⊂平面ABC,平面ABC∩平面ACC1A1=AC, 根据面面垂直的性质定理可知DE⊥平ACC1A1,则EF是DF在平面ACC1A1内的射影,则EF⊥A1C,从而∠DFE是二面角D-A1C-A的平面角,在直角三角形ADC中,求出DE、DF,即可求出∠DFE. (I)证明:连接AC1交A1C于点G,连接DG, 在正三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形, ∴AC=GC1, ∵AD=DB, ∴DG∥BC1(2分) ∵DG⊂平面A1DC,BC1⊄平面A1DC, ∴BC1∥平面A1DC.(4分) (II)【解析】 过点D作DE⊥AC交AC于E,过点D作DF⊥A1C交A1C于F,连接EF. ∵平面ABC⊥面平ACC1A1,DE⊂平面ABC,平面ABC∩平面ACC1A1=AC, ∴DE⊥平ACC1A1. ∴EF是DF在平面ACC1A1内的射影. ∴EF⊥A1C, ∴∠DFE是二面角D-A1C-A的平面角,(8分) 在直角三角形ADC中,. 同理可求:. ∴. ∴. ∴.(12分)
复制答案
考点分析:
相关试题推荐
设Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列.(1)求manfen5.com 满分网的值;(2)若a5=9,求an及Sn,的表达式.
查看答案
小张参加某电视台举办的百科知识竞赛的预选赛,只有闯过了三关的人才能参加决赛.按规则:只有过了第一关,才能去闯第二关;只有过了第二关,才能去闯第三关.对小张来说,过第一关的概率为0.8,如果不按规则去闯第一关,而直接去闯第二关能通过的概率为0.75,直接去闯第三关能通过的概率为0.5.
(Ⅰ)求小张在第二关被淘汰的概率;
(Ⅱ)求小张不能参加决赛的概率.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC
(1)求角B的大小;
(2)设向量manfen5.com 满分网,求manfen5.com 满分网的最大值.
查看答案
将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:
①AC⊥BD; 
②△ACD是等边三角形;
③AB与平面BCD成60°的角;   
④AB与CD所成的角为60°;
其中正确结论是    (写出所有正确结论的序号) 查看答案
已知实数x,y满足manfen5.com 满分网则z=2x+4y的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.