数列{a
n}的各项均为正数,S
n为其前n项和,对于任意n∈N
*,总有a
n,S
n,a
n2成等差数列.
(1)求数列{a
n}的通项公式;
(2)设数列{b
n}的前n项和为T
n,且
,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有T
n<2;
(3)正数数列{c
n}中,a
n+1=(c
n)
n+1(n∈N
*),求数列{c
n}中的最大项.
考点分析:
相关试题推荐
已知定点A、B间的距离为2,以B为圆心作半径为2
的圆,P为圆上一点,线段AP的垂直平分线l与直线PB交于点M,当P在圆周上运动时,点M的轨迹记为曲线C.
(1)建立适当的坐标系,求曲线C的方程,并说明它是什么样的曲线;
(2)试判断l与曲线C的位置关系,并加以证明.
查看答案
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E、F分别是PC、PD的中点,求证:
(Ⅰ)EF∥平面PAB;
(Ⅱ)平面PAD⊥平面PDC.
查看答案
已知函数f(x)=2cos
2x+2sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调增区间.
查看答案
已知
是R上的增函数,则a的取值范围是
.
查看答案
已知数列{a
n}满足a
1=1,
(n≥2,n∈N
*),则a
2010=
.
查看答案