已知函数
和函数g(x)=lnx,记F(x)=f(x)+g(x).
(1)当
时,若f(x)在[1,2]上的最大值是f(2),求实数a的取值范围;
(2)当a=1时,判断F(x)在其定义域内是否有极值,并予以证明;
(3)对任意的
,若F(x)在其定义域内既有极大值又有极小值,试求实数a的取值范围.
考点分析:
相关试题推荐
时值5月,荔枝上市.某市水果市场由历年的市场行情得知,从5月10日起的60天内,荔枝的售价S(t)(单位:元/kg)与上市时间t(单位:天)的关系大致可用如图1所示的折线ABCD表示,每天的销售量M(t)(单位:吨)与上市时间t(单位:天)的关系大致可用如图2所示的抛物线段OEF表示,其中O为坐标原点,E是抛物线的顶点.
(1)请分别写出S(t),M(t)关于t的函数关系式;
(2)在这60天内,该水果市场哪天的销售额最大?
查看答案
数列{a
n}的各项均为正数,S
n为其前n项和,对于任意n∈N
*,总有a
n,S
n,a
n2成等差数列.
(1)求数列{a
n}的通项公式;
(2)设数列{b
n}的前n项和为T
n,且
,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有T
n<2;
(3)正数数列{c
n}中,a
n+1=(c
n)
n+1(n∈N
*),求数列{c
n}中的最大项.
查看答案
已知定点A、B间的距离为2,以B为圆心作半径为2
的圆,P为圆上一点,线段AP的垂直平分线l与直线PB交于点M,当P在圆周上运动时,点M的轨迹记为曲线C.
(1)建立适当的坐标系,求曲线C的方程,并说明它是什么样的曲线;
(2)试判断l与曲线C的位置关系,并加以证明.
查看答案
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E、F分别是PC、PD的中点,求证:
(Ⅰ)EF∥平面PAB;
(Ⅱ)平面PAD⊥平面PDC.
查看答案
已知函数f(x)=2cos
2x+2sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调增区间.
查看答案