满分5 > 高中数学试题 >

选修4-4:极坐标与参数方程 已知某圆的极坐标方程为:ρ2-4ρcos(θ-)+...

选修4-4:极坐标与参数方程
已知某圆的极坐标方程为:ρ2-4manfen5.com 满分网ρcos(θ-manfen5.com 满分网)+6=0.
(1)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
(1)利用两角差的余弦公式展开极坐标方程,再将直角坐标与极坐标的互化公式代入,极坐标方程即  ρ2-4 ( +),即 x2+y2-4x-4y+6=0. (2)圆的参数方程为  ,故 x+y=4+(sinα+cosα)=4+2sin(α+),由于-1≤sin(α+)≤1,可得 2≤x+y≤6. 【解析】 (1) 即  ρ2-4( + ),即 x2+y2-4x-4y+6=0.(2)圆的参数方程为 ,∴x+y=4+(sinα+cosα)=4+2sin(α+). 由于-1≤sin(α+)≤1,∴2≤x+y≤6,故x+y 的最大值为6,最小值等于 2.
复制答案
考点分析:
相关试题推荐
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(Ⅰ)求证:∠P=∠EDF;
(Ⅱ)求证:CE•EB=EF•EP.

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网,g(x)=xcosx-sinx.
(1)求证:当x∈(0,π]时,g(x)<0;
(2)存在x∈(0,π],使得f(x)<a成立,求a的取值范围;
(3)若g(bx)≤bxcosbx-bsinx(b≥-1)对x∈(0,π]恒成立,求b的取值范围.
查看答案
设m>3,对于有穷数列{an}(n=1,2,…,m),令bk为a1,a2,…ak中的最大值,称数列{bn}(为{an}的“创新数列”.数列{bn}(中不相等项的个数称为{an}的“创新阶数”.例如数列2,1,3,7,5的创新数列为2,2,3,7,7,创新阶数为3.考察自然数 1,2…m(m>3)的所有排列,将每种排列都视为一个有穷数列{cn}.
(1)若m=5,写出创新数列为3,4,4,5,5的所有数列{cn};
(2)是否存在数列{cn},使它的创新数列为等差数列?若存在,求出所有的数{cn},若不存在,请说明理由.
查看答案
一束光线从点F1(-1,0)出发,经直线l:2x-y+3=0上一点P反射后,恰好穿过点F2(1,0).
(1)求P点的坐标;
(2)求以F1、F2为焦点且过点P的椭圆C的方程;
(3)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B,使得直线QA、QB的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.
查看答案
一个圆环直径为manfen5.com 满分网,通过铁丝BC,CA1,CA2,CA3(A1,A2,A3是圆上三等分点)悬挂在B处,圆环呈水平状态并距天花板2m,如图所示.
(Ⅰ)设BC长为x(m),铁丝总长为y(m),试写出y关于x的函数解析式,并写出函数定义域;
(Ⅱ)当x取多长时,铁丝总长y有最小值,并求此最小值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.