满分5 > 高中数学试题 >

(2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、...

(2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:
福娃名称贝贝晶晶欢欢迎迎妮妮
数量12311
从中随机地选取5只.
(1)求选取的5只恰好组成完整“奥运吉祥物”的概率;
(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推.设ξ表示所得的分数,求ξ的分布列和数学期望.
(1)本题是一个古典概型,试验发生包含的事件是从8只吉祥物中选5只,满足条件的事件是选取的5只恰好组成完整“奥运吉祥物”,共有C21C31种结果,根据古典概型的概率公式得到结果. (2)ξ表示所得的分数,则ξ的取值为100,80,60,40.结合变量对应的事件,根据古典概型的概率公式和互斥事件的概率公式得到变量的分布列和期望. 【解析】 (1)由题意知本题是一个古典概型, 试验发生包含的事件是从8只吉祥物中选5只,共有C85种结果, 满足条件的事件是选取的5只恰好组成完整“奥运吉祥物”,共有C21C31种结果 ∴选取的5只恰好组成完整“奥运吉祥物”的概率. (2)由题意知ξ表示所得的分数,则ξ的取值为100,80,60,40. 根据古典概型的概率公式和互斥事件的概率公式得到 ; ;; . ∴ξ的分布列为 ∴.
复制答案
考点分析:
相关试题推荐
选修4-4:极坐标与参数方程
已知某圆的极坐标方程为:ρ2-4manfen5.com 满分网ρcos(θ-manfen5.com 满分网)+6=0.
(1)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
查看答案
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(Ⅰ)求证:∠P=∠EDF;
(Ⅱ)求证:CE•EB=EF•EP.

manfen5.com 满分网 查看答案
设函数manfen5.com 满分网,g(x)=xcosx-sinx.
(1)求证:当x∈(0,π]时,g(x)<0;
(2)存在x∈(0,π],使得f(x)<a成立,求a的取值范围;
(3)若g(bx)≤bxcosbx-bsinx(b≥-1)对x∈(0,π]恒成立,求b的取值范围.
查看答案
设m>3,对于有穷数列{an}(n=1,2,…,m),令bk为a1,a2,…ak中的最大值,称数列{bn}(为{an}的“创新数列”.数列{bn}(中不相等项的个数称为{an}的“创新阶数”.例如数列2,1,3,7,5的创新数列为2,2,3,7,7,创新阶数为3.考察自然数 1,2…m(m>3)的所有排列,将每种排列都视为一个有穷数列{cn}.
(1)若m=5,写出创新数列为3,4,4,5,5的所有数列{cn};
(2)是否存在数列{cn},使它的创新数列为等差数列?若存在,求出所有的数{cn},若不存在,请说明理由.
查看答案
一束光线从点F1(-1,0)出发,经直线l:2x-y+3=0上一点P反射后,恰好穿过点F2(1,0).
(1)求P点的坐标;
(2)求以F1、F2为焦点且过点P的椭圆C的方程;
(3)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B,使得直线QA、QB的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.