满分5 > 高中数学试题 >

已知函数f(x)=lnx-a2x2+ax(a∈R). (1)当a=1时,求函数f...

已知函数f(x)=lnx-a2x2+ax(a∈R).
(1)当a=1时,求函数f(x)最大值;
(2)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围.
(1)把a=1代入函数,利用导数判断出函数的单调性,进而可求出函数f(x)最大值; (2)对参数a进行讨论,然后利用导数f′(x)≤0(注意函数的定义域)来解答,方法一是先解得单调减区间A,再与已知条件中的减区间(1,+∞)比较,即只需要(1,+∞)⊆A即可解答参数的取值范围;方法二是要使函数f(x)在区间(1,+∞)上是减函数,我们可以转化为f′(x)≤0在区间(1,+∞)上恒成立的问题来求解,然后利用二次函数的单调区间于对称轴的关系来解答也可达到目标. 【解析】 (1)当a=1时,f(x)=lnx-x2+x,其定义域是(0,+∞),---------(1分) ∴-------------------(2分) 令f'(x)=0,即,解得或x=1. ∵x>0,∴舍去. 当0<x<1时,f'(x)>0;当x>1时,f'(x)<0. ∴函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减 ∴当x=1时,函数f(x)取得最大值,其值为f(1)=ln1-12+1=0.---(6分) (2)法一:因为f(x)=lnx-a2x2+ax其定义域为(0,+∞), 所以 ①当a=0时,, ∴f(x)在区间(0,+∞)上为增函数,不合题意----------(8分) ②当a>0时,f'(x)<0(x>0)等价于(2ax+1)(ax-1)>0(x>0),即. 此时f(x)的单调递减区间为. 依题意,得解之得a≥1.-------------------(12分) ③当a<0时,f'(x)<0(x>0)等价于(2ax+1)(ax-1)>(x>0),即• 此时f(x)的单调递减区间为, ∴得(14分) 综上,实数a的取值范围是-----------(16分) 法二:∵f(x)=lnx-a2x2+ax,x∈(0,+∞) ∴ 由f(x)在区间(1,+∞)上是减函数,可得-2a2x2+ax+1≤0在区间(1,+∞)上恒成立.--------------8分 ①当a=0时,1≤0不合题意----------------------------------10 ②当a≠0时,可得即 ∴-----------14分 ∴----------------------------------16分
复制答案
考点分析:
相关试题推荐
某厂家拟在2010年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=3-manfen5.com 满分网(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2010年该产品的利润y万元表示为年促销费用m万元的函数;
(2)该厂家2010年的促销费用投入多少万元时,厂家的利润最大.
查看答案
已知数列{an}是首项为a1=manfen5.com 满分网,公比q=manfen5.com 满分网的等比数列,设manfen5.com 满分网(n∈N*),数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
查看答案
已知函数f(x)=manfen5.com 满分网,其中manfen5.com 满分网manfen5.com 满分网=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于manfen5.com 满分网
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=manfen5.com 满分网,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.
查看答案
已知集合A={x|x2-2x-15≤0},B={x|x2-(2m-9)x+m2-9m≥0,m∈R}
(1)若A∩B=[-3,3],求实数m的值;
(2)设全集为R,若A⊆CRB,求实数m的取值范围.
查看答案
已知t为常数,函数y=|x2-2x-t|在区间[0,3]上的最大值为2,则t=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.