满分5 > 高中数学试题 >

已知二次函数f(x)=x2+ax+b(a、b∈R). (1)若函数f(x)无零点...

已知二次函数f(x)=x2+ax+b(a、b∈R).
(1)若函数f(x)无零点,求证:b>0;
(2)若函数f(x)有两个零点,且两零点是相邻两整数,求证:manfen5.com 满分网
(3)若函数f(x)有两非整数零点,且这两零点在相邻两整数之间,试证明:存在整数k,使得manfen5.com 满分网
(1)只需要转化为相应方程的根的问题即可解答; (2)充分利用函数与方程的思想,在对应方程当中利用韦达定理即可解答; (3)当中充分利用数形结合的思想即可获得相应的不等条件,再结合二次函数配方利用函数的思想即可获得函数值的范围. 【解析】 (1)证明:f(x)=x2+ax+b无零点, △=a2-4b<0, . (2)证明:设f(x)=(x-m)(x-m-1),m∈Z, 则2m+1=-a,, 所以. (3)证明:设相邻两整数为t、t+1,则f(t)>0,f(t+1)>0且△=a2-4b>0, 根据二次函数的单调性,f/(t)=2t+a<0,f/(t+1)=2(t+1)+a>0, 从而-2(t+1)<a<-2t即. 所以或. 若, 则,从而; 若, 则,从而. 所以,存在整数k(k=t或k=t+1),使得.
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网,当x1、x2∈R且x1+x2=1时,总有manfen5.com 满分网
(1)求m的值;
(2)设数列{an}满足manfen5.com 满分网,求{an}的通项公式;
(3)对∀n∈N*manfen5.com 满分网恒成立,求k的取值范围(其中k>0且k≠1).
查看答案
在R上定义运算:manfen5.com 满分网(b、c∈R是常数),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函数f(x)在x=1处有极值manfen5.com 满分网,试确定b、c的值;
②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;
③记g(x)=|f′(x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2
查看答案
已知函数manfen5.com 满分网,a∈R是常数.
(1)讨论f(x)的单调性;
(2)求manfen5.com 满分网时,f(x)零点的个数;
③求证:manfen5.com 满分网(n∈N*,e为自然对数的底数).
查看答案
设数列an、bn、cn的前n项和分别为Sn、Tn、Rn,对∀n∈N*,an=5Sn+1,manfen5.com 满分网,cn=b2n-b2n-1
①求an的通项公式;
②求证:manfen5.com 满分网
③若Tn<λn,对∀n∈N*恒成立,求λ的取值范围.
查看答案
已知数列an的首项a1=0,an+an+1(n∈N*)是首项为1、公差为3的等差数列.
①求an的通项公式;
②求数列2-n×an的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.