由圆C的标准方程可得圆心为(1,1),半径为1,由于四边形PACB面积等于 2× PA×AC=PA,而PA=,
故当PC最小时,四边形PACB面积最小,又PC的最小值等于圆心C到直线l的距离d,求出d 即可得到四边形PACB面积的最小值.
【解析】
圆C:x2+y2-2x-2y+1=0 即 (x-1)2+(y-1)2=1,表示以C(1,1)为圆心,以1为半径的圆.
由于四边形PACB面积等于 2× PA×AC=PA,而 PA=,
故当PC最小时,四边形PACB面积最小.
又PC的最小值等于圆心C到直线l:3x+4y+8=0 的距离d,而d==3,
故四边形PACB面积的最小的最小值为=2,
故选B.