满分5 > 高中数学试题 >

设数列{an}、{bn}满足,且,n∈N*. (Ⅰ)求数列{an}的通项公式; ...

设数列{an}、{bn}满足manfen5.com 满分网,且manfen5.com 满分网,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对一切n∈N*,证明manfen5.com 满分网成立;
(Ⅲ)记数列{an2}、{bn}的前n项和分别是An、Bn,证明:2Bn-An<4.
(Ⅰ)由2nan+1=(n+1)an,得,由此可求出数列{an}的通项公式. (Ⅱ)由,知要证明,只需证明ln(1+an)-an<0成立.构造函数f(x)=ln(1+x)-x(x≥0),则,当x>0时,f'(x)<0,故f(x)<f(0)=0.ln(1+an)-an<0对一切n∈N*都成立. (Ⅲ)由2bn-an2=2ln(1+an)<2an,知,利用错位相减求得2Bn-An<4. 【解析】 (Ⅰ)由2nan+1=(n+1)an,得,(1分) 即数列是以为首项,以为公比的等比数列,∴(3分) (Ⅱ)∵, ∴要证明,只需证明2bn<an2+2an, 即证,即证明ln(1+an)-an<0成立.(5分) 构造函数f(x)=ln(1+x)-x(x≥0),(6分) 则,当x>0时,f'(x)<0,即f(x)在(0,+∞)上单调递减, 故f(x)<f(0)=0.∴ln(1+x)-x<0,即ln(1+an)-an<0对一切n∈N*都成立, ∴.(8分) (Ⅲ)∵2bn-an2=2ln(1+an),由(Ⅱ)可知,2bn-an2=2ln(1+an)<2an, ∴2Bn-An<2(a1+a2++an)=2(10分) 利用错位相减求得:,∴2Bn-An<4(12分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的一条准线为x=-4,且与抛物线y2=8x有相同的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点P是该椭圆的左准线与x轴的交点,过点P的直线l与椭圆相交于M、N两点,且线段MN的中点恰好落在由该椭圆的两个焦点、两个短轴顶点所围成的四边形区域内(包括边界),求此时直线l斜率的取值范围.
查看答案
四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1).
manfen5.com 满分网
将这四个纪念币同时投掷一次,设ξ表示正面向上的纪念币的个数.
(Ⅰ)求ξ的取值及相应的概率;
(Ⅱ)求在概率p(ξ)中,p(ξ=2)为最大时,实数a的取值范围.
查看答案
如图,在正三棱柱ABC-A1B1C1中,E为AC的中点.
(I)若manfen5.com 满分网,求点A到平面BEC1的距离;
(Ⅱ)当manfen5.com 满分网为何值时,二面角E-BC1-C的正弦值为manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)化简函数f(x)的解析式,并求f(x)的最小正周期;
(Ⅱ)若方程manfen5.com 满分网恒有实数解,求实数t的取值范围.
查看答案
有下列命题:
①过双曲线xy=k(k>0)上任意一点的切线与两坐标轴围成的三角形的面积为manfen5.com 满分网
②曲线xy=k(k>0)关于原点对称;
③一系列双曲线manfen5.com 满分网,所有这些双曲线的实轴长之和为manfen5.com 满分网
④“xy=k(k>0)被直线manfen5.com 满分网所截得的线段与x2-y2=k(k>0)被直线manfen5.com 满分网所截得的线段相等”是必然事件.其中所有真命题的序号是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.