由题意知an=3n-1,bn=3n-1-2,bn+1=3bn+4.{bn}的前n项和Sn=(1-2)+(31-2)+(32-2)+(33-2)++(3n-1-2)=(1+31+32+33++3n-1)-2n=-2n=(3n-1)-2n.
【解析】
因为数列{an}是首项为1公比为3的等比数列,所以数列{an}的通项公式
an=3n-1,则依题意得,数列{bn}的通项公式为bn=3n-1-2,∴bn+1=3n-2,3bn=3(3n-1-2)=3n-6,
∴bn+1=3bn+4.{bn}的前n项和为:
Sn=(1-2)+(31-2)+(32-2)+(33-2)++(3n-1-2)=(1+31+32+33++3n-1)-2n=-2n
=(3n-1)-2n.
故选C.