满分5 > 高中数学试题 >

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分...

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
求矩阵manfen5.com 满分网的特征值及对应的特征向量.
(2)选修4一4:坐标系与参数方程
已知直线l的参数方程:manfen5.com 满分网(t为参数)和圆C的极坐标方程:manfen5.com 满分网
(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.
(1)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量. (2)(Ⅰ)将直线l的参数方程的参数t消去即可求出直线的普通方程,利用极坐标转化成直角坐标的转换公式求出圆的直角坐标方程; (Ⅱ)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较. (3)由|a+b|+|a-b|≥|a|f(x),且a≠0,得≥f(x)则可以求出左式的最小值,使得f(x)小于等于最小值即可,从而得到解不等式|x-1|+|x-2|≤2即得. 【解析】 (1)设A的一个特征值为λ,由题意知:, 所以(λ-2)λ-3=0,即λ1=-1,λ2=3.(3分) 将λ1=-1代入特征方程组,得. 可取为属于特征值λ1=-1的一个特征向量. 将λ2=3代入特征方程组,得. 可取为属于特征值λ2=3的一个特征向量. (2)(Ⅰ)消去参数t,得直线l的普通方程为y=2x+1(3分) ρ=2),即ρ=2(sinθ+cosθ),两边同乘以ρ得ρ2=2(ρsinθ+ρcosθ), 得⊙C的直角坐标方程为(x-1)2+(x-1)2=2(5分) (Ⅱ)圆心C到直线l的距离d=,所以直线l和⊙C相交(7分) (3)由|a+b|+|a-b|≥|a|f(x),且a≠0,得≥f(x)(3分) 又因为=2,则有2≥f(x)(5分) 解不等式|x-1|+|x-2|≤2,得(7分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)-t|-1有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
查看答案
已知椭圆manfen5.com 满分网的某个焦点为F,双曲线manfen5.com 满分网(a,b>0)的某个焦点为F.
(1)请在______
查看答案
一走廊拐角下的横截面如图所示,已知内壁FG和外壁BC都是半径为1m的四分之一圆弧,AB,DC分别与圆弧BC相切于B、C两点,EF∥AB,GH∥CD,且两组平行墙壁间的走廊宽度都是1m.
(1)若水平放置的木棒MN的两个端点M、N分别在外壁CD和AB上,且木棒与内壁圆弧相切于点P.设∠CMN=θ(rad),试用θ表示木棒MN和长度f(θ).
(2)若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值.

manfen5.com 满分网 查看答案
如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;
(2)求平面EBD与平面ABC所成的锐二面角θ的余弦值.

manfen5.com 满分网 查看答案
某投资公司在2010年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为manfen5.com 满分网manfen5.com 满分网
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.