满分5 > 高中数学试题 >

如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点....

如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积;
(3)求证:CE⊥AF.

manfen5.com 满分网
(1)由多面体AEDBFC的三视图知,侧面ABFE,ABCD都是边长为2的正方形,由三角形中位线的性质得:MN∥EC,从而证得MN∥平面CDEF. (2)先证四边形CDEF是矩形,利用面面垂直的性质证明并求出棱锥的高,代入体积公式计算棱锥的体积. (3)由BC⊥平面ABEF,证明BC⊥AF,面ABFE是正方形,证得EB⊥AF,进而AF⊥面BCE,结论得证. 证明:(1):由多面体AEDBFC的三视图知, 三棱柱AED-BFC中,底面DAE是等腰直 角三角形,DA=AE=2,DA⊥平面ABEF, 侧面ABFE,ABCD都是边长为2的正方形. 连接EB,则M是EB的中点, 在△EBC中,MN∥EC, 且EC⊂平面CDEF,MN⊄平面CDEF, ∴MN∥平面CDEF. (2)因为DA⊥平面ABEF,EF⊂平面ABEF,∴EF⊥AD, 又EF⊥AE,所以,EF⊥平面ADE, ∴四边形CDEF是矩形, 且侧面CDEF⊥平面DAE 取DE的中点H,∵DA⊥AE,DA=AE=2,∴, 且AH⊥平面CDEF. 所以多面体A-CDEF的体积. (3)∵DA⊥平面ABEF,DA∥BC, ∴BC⊥平面ABEF, ∴BC⊥AF, ∵面ABFE是正方形, ∴EB⊥AF, ∴AF⊥面BCE, ∴CE⊥AF.
复制答案
考点分析:
相关试题推荐
已知已知函数manfen5.com 满分网,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(Ⅰ)求证:数列manfen5.com 满分网是等差数列;
(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
查看答案
现有编号分别为1,2,3的三个不同的政治基本题,另有编号分别为4,5的两个不同的历史基本题.甲同学从这五个基本题中一次随即抽取两道题,每题做对做错及每题被抽到的概率是相等的.
(1)用符号(x,y)表示事件“抽到的两题的编号分别为x、y,且x<y”共有多少个基本事件?请列举出来:
(2)求甲同学所抽取的两道基本题的编号之和小于8但不小于4的概率.
查看答案
已知a、b、c分别是△ABC中角A、B、C的对边,且a2+c2-b2=ac.
(Ⅰ)求角B的大小;      (Ⅱ)若c=3a,求tanA的值.
查看答案
设点O在△ABC的内部且满足:manfen5.com 满分网,现将一粒豆子随机撒在△ABC中,则豆子落在△OBC中的概率是    查看答案
在实验中一粒石子落入右图阴影部分的概率是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.