满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC...

manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD∥BC,AD⊥侧面PAB,△PAB是等边三角形,DA=AB=2,BC=manfen5.com 满分网AD,E是线段AB的中点.
(Ⅰ)求证:PE⊥CD;
(Ⅱ)求四棱锥P-ABCD的体积;
(Ⅲ)求PC与平面PDE所成角的正弦值.
(Ⅰ)先证明AD⊥PE,再证明PE⊥AB.AD∩AB=A,推出PE⊥平面ABCD.然后证明PE⊥CD. (Ⅱ)说明PE是四棱锥P-ABCD的高.求出PE=.然后求出. (Ⅲ)以E为原点,建立如图所示的空间直角坐标系E-xyz.推出,,.设=(x,y,z)为平面PDE的法向量.利用由即,可得=(1,-2,0).设PC与平面PDE所成的角为θ.利用.推出PC与平面PDE所成角的正弦值为. (Ⅰ)证明:因为AD⊥侧面PAB,PE⊂平面PAB, 所以AD⊥PE.(2分) 又因为△PAB是等边三角形,E是线段AB的中点, 所以PE⊥AB. 因为AD∩AB=A, 所以PE⊥平面ABCD.(4分) 而CD⊂平面ABCD, 所以PE⊥CD.(5分) (Ⅱ)【解析】 由(Ⅰ)知:PE⊥平面ABCD,所以PE是四棱锥P-ABCD的高. 由DA=AB=2,BC=AD,可得BC=1. 因为△PAB是等边三角形, 可求得PE=. 所以.(9分) (Ⅲ)【解析】 以E为原点,建立如图所示的空间直角坐标系E-xyz. 则E(0,0,0),C(1,-1,0),D(2,1,0),P(0,0,). ,,. 设=(x,y,z)为平面PDE的法向量. 由即, 令X=1,可得m=(1,-2,0).(12分) 设PC与平面PDE所成的角为θ. . 所以PC与平面PDE所成角的正弦值为.(14分)
复制答案
考点分析:
相关试题推荐
袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等.
(Ⅰ)求取出的3个小球上的数字互不相同的概率;
(Ⅱ)用X表示取出的3个小球上所标的最大数字,求随机变量X的分布列和均值.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,manfen5.com 满分网,C=2A.
(Ⅰ)求cosC的值;
(Ⅱ)若ac=24,求a,c的值.
查看答案
已知数列{an}中,Sn是其前n项和,若a1=1,a2=2,anan+1an+2=an+an+1+an+2,且an+1an+2≠1,则a1+a2+a3=    ,S2010=    查看答案
在函数f(x)=Asin(ωx+φ)(A>0,ω>0)的一个周期内,当x=manfen5.com 满分网时有最大值manfen5.com 满分网,当x=manfen5.com 满分网时有最小值-manfen5.com 满分网,若φ∈(0,manfen5.com 满分网),则函数解析式f(x)=    查看答案
在平面直角坐标系xOy中,已知圆C:manfen5.com 满分网(θ为参数)和直线l:manfen5.com 满分网(t为参数),则直线l与圆C相交所得的弦长等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.