满分5 > 高中数学试题 >

已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=...

已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,manfen5.com 满分网)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为manfen5.com 满分网,求以F2为圆心且与直线l相切的圆的方程.
(Ⅰ)先设出椭圆的方程,根据题设中的焦距求得c和焦点坐标,根据点(1,)到两焦点的距离求得a,进而根据b=求得b,得到椭圆的方程. (Ⅱ)先看当直线l⊥x轴,求得A,B点的坐标进而求得△AF2B的面积与题意不符故排除,进而可设直线l的方程为:y=k(x+1)与椭圆方程联立消y,设A(x1,y1),B(x2,y2),根据韦达定理可求得x1+x2和x1•x2,进而根据表示出|AB|的距离和圆的半径,求得k,最后求得圆的半径,得到圆的方程. 【解析】 (Ⅰ)设椭圆的方程为,由题意可得: 椭圆C两焦点坐标分别为F1(-1,0),F2(1,0). ∴. ∴a=2,又c=1,b2=4-1=3, 故椭圆的方程为. (Ⅱ)当直线l⊥x轴,计算得到: ,,不符合题意. 当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1), 由,消去y得(3+4k2)x2+8k2x+4k2-12=0 显然△>0成立,设A(x1,y1),B(x2,y2), 则, 又 即, 又圆F2的半径, 所以, 化简,得17k4+k2-18=0, 即(k2-1)(17k2+18)=0,解得k=±1 所以,, 故圆F2的方程为:(x-1)2+y2=2.
复制答案
考点分析:
相关试题推荐
庐山是我国四大名山之一,从石门涧可徒步攀登至山顶主景区,沿途风景秀丽,右图是从石门涧上山的旅游示意图,若游客在每一分支处选择哪一条路上山是等可能的(认定游客是始终沿上山路线,不往下走,例到G后不会往E方向走).
(l)茌游客已到达A处的前提下,求经过点F的概率;
(2)在旺季七月份,每天约有1200名游客需由石门涧登山,石门涧景区决定在C、F、G处设售水点,若每位游客在到达C、F、G处条件下买水的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,则景区每天至少供应多少瓶水是合理的?

manfen5.com 满分网 查看答案
如图,棱柱ABCD-A1B1C1D1的所有棱长都为2,AC∩BD=O,则棱AA1与底面ABCD所成的角为60°,A1O⊥平面ABCD,F为DC1的中点.
(1)证明:BD⊥AA1
(2)证明:OF∥平面BCC1B1
(3)求二面角D-AA1-C的余弦值.

manfen5.com 满分网 查看答案
已知数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4.
(1)求数列{bn}的通项公式;
(2)若数列{an}的通项公式是an=n+2,数列{anbn}的前n项和为Sn,求Sn
查看答案
已知△ABC的三个内角A,B,C所对的边分别为a,b,c.manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求A的大小;
(Ⅱ)若a=1,manfen5.com 满分网.求S△ABC
查看答案
定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x(a<x<b),满足manfen5.com 满分网,则称函数y=f(x)是[a,b]上的“平均值函数”,x是它的一个均值点.如y=x4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f(x)=-x2+mx+1是区间[-1,1]上的平均值函数,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.