设F
1、F
2分别是椭圆
的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求PF
1•PF
2的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
考点分析:
相关试题推荐
已知函数f(x)=x
2-alnx(常数a>0).
(Ⅰ)当a=3时,求曲线y=f(x)在点(1,f(x))处的切线方程;
(Ⅱ)讨论函数f(x)在区间(1,e
a)上零点的个数(e为自然对数的底数).
查看答案
如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求直线PD与平面PAM所成角的正弦值.
查看答案
某小组有7个同学,其中4个同学从来没有参加过数学研究性学习活动,3个同学曾经参加过数学研究性学习活动.
(Ⅰ)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;
(Ⅱ)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,此时该小组没有参加过数学研究性学习活动的同学个数ξ是一个随机变量,求随机变量ξ的分布列及数学期望Eξ.
查看答案
已知在锐角△ABC中,角A,B,C,的对边分别为a,b,c,且
,
(1)求∠B;(2)求函数
的最小值及单调递减区间.
查看答案
已知从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m<n,n,m∈N),共有C
n+1m种取法.在这C
n+1m种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是取出一个黑球和(m-1)个白球,共有C
1C
nm+C
11C
nm-1种取法,即有等式C
nm+C
nm-1=C
n+1m成立.试根据上述思想,化简下列式子:C
nm+C
k1C
nm-1+C
k2C
nm-2+…+C
kkC
nm-k=
.(1≤k<m≤n,k,m,n∈N)
查看答案