(I)将Sn=2an+n2-3n-2利用数列中an,Sn的关系进行转化构造出新数列{an-2n},再据其性质证明.
(Ⅱ)将(I)中所求的an代入bn,分组求和法求和.
【解析】
(I)∵Sn=2an+n2-3n-2①∴Sn+1=2an+1+(n+1)2-3(n+1)-2
两式相减,得an+1=2an+1-2an+2n-2,∴an+1=2an-2n+2
故an+1-2(n+1)=2(an-2n),又在①式中令n=1得a1=4,∴a1-2≠0∴,
∴{an-2n}为等比数列
(II)由(I)知:an-2n=2•2n-1,∴an=2n+2n且cosnπ=(-1)n
当n为偶数时,设n=2k(k∈N*)
则Pn=b1+b2+…+bn=(b1+b3+…+b2k-1)+(b2+b4+…+b2k)={-(2+2×1)-(23+2×3)-…-[22k-1+2(2k-1)]}+[(22+2×2)+(24+2×4)+…+(22k+2k)]=-(2+23+…+22k-1)-2[1+3+…+(2k-1)]+(22+24+…+22k)+2(2+4+…+2k)=-(2-22+23-24+…+22k-1-22k)+2[-1+2-3+4-…-(2k-1)+2k]==
当n为奇数时,设n=2k-1(k∈N*),同理可得==
综上所述,