已知点H(0,-3),点P在x轴上,点Q在y轴正半轴上,点M在直线PQ上,且满足
•
=0,
=-
(1)当点P在x轴上移动时,求动点M的轨迹曲线C的方程;
(2)过定点A(a,b)的直线与曲线C相交于两点S R,求证:抛物线S R两点处的切线的交点B恒在一条直线上.
考点分析:
相关试题推荐
如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.
查看答案
一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为q,若第k次出现“○”,则记a
k=1;出现“×”,则记a
k=-1,令S
n=a
1+a
2+••+a
n.
(I)当p=q=
时,记ξ=|S
3|,求ξ的分布列及数学期望;
(II)当p=
,q=
时,求S
8=2且S
i≥0(i=1,2,3,4)的概率.
查看答案
已知向量:
=(cosωx-sinωx,2sinωx),(其中ω>0),函数f(x)=
,若f(x)相邻两对称轴间的距离为
.
(1)求ω的值,并求f(x)的最大值及相应x的集合;
(2)在△ABC中,a,b,c分别是A,B,C所对的边,△ABC的面积S=5
,b=4,f(A)=1,求边a的长.
查看答案
对于各数互不相等的正数数组(i
1,i
2,…,i
n)(n是不小于2的正整数),如果在p<q时有i
p>i
q,则称i
p与i
q是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.例如,数组(2,4,3,1)中有逆序“2,1”,“4,3”,“4,1”,“3,2”,其“逆序数”等于4.若各数互不相等的正数数组(a
1,a
2,a
3,a
4,a
5,a
6)的“逆序数”是2,则(a
6,a
5,a
4,a
3,a
2,a
1)的“逆序数”是
.
查看答案
在右图的程序框图中,该程序框图输出的结果是28,则序号①应填入的条件是
.
查看答案