满分5 > 高中数学试题 >

已知函数f(x)=x2+alnx. (1)当a=-2时,求函数f(x)的单调区间...

已知函数f(x)=x2+alnx.
(1)当a=-2时,求函数f(x)的单调区间和极值;
(2)若manfen5.com 满分网在[1,+∞)上是单调函数,求实数a的取值范围.
(1)求出函数f(x)的导数,得到导数在x=1时为零.然后列表讨论函数在区间(0,1)和(1,+∞)上讨论函数的单调性,即可得到函数f(x)的单调区间和极值; (2)在[1,+∞)上是单调函数,说明g(x)的导数g'(x)在区间[1,+∞)恒大于等于0,或g'(x)在区间[1,+∞)恒小于等于0.然后分两种情况加以讨论,最后综合可得实数a的取值范围. 【解析】 (1)易知,函数f(x)的定义域为(0,+∞).…(1分) 当a=-2时,.…(2分) 当x变化时,f'(x)和f(x)的值的变化情况如下表:…(4分) x (0,1) 1 (1,+∞) f'(x) - + f(x) 递减 极小值 递增 由上表可知,函数f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞),极小值是f(1)=1.…(8分) (2)由,得.…(9分) 又函数为[1,+∞)上单调函数, ①若函数g(x)为[1,+∞)上的单调增函数, 则g'(x)≥0在[1,+∞)上恒成立, 即不等式在[1,+∞)上恒成立. 也即在[1,+∞)上恒成立, 而φ(x)=在[1,+∞)上的最大值为φ(1)=0,所以a≥0.…(12分) ②若函数g(x)为[1,+∞)上的单调减函数, 根据①,在[1,+∞)上φ(x)max=φ(1)=0,φ(x)没有最小值.…(13分) 所以g'(x)≤0在[1,+∞)上是不可能恒成立的.…(15分) 综上,a的取值范围为[0,+∞).…(16分)
复制答案
考点分析:
相关试题推荐
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,manfen5.com 满分网(万元);当年产量不小于80千件时,manfen5.com 满分网(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案
已知manfen5.com 满分网=2,
求;(1)manfen5.com 满分网的值;
(2)manfen5.com 满分网的值;
(3)3sin2α+4sinαcosα+5cos2α的值.
查看答案
已知向量manfen5.com 满分网满足manfen5.com 满分网,且manfen5.com 满分网,令manfen5.com 满分网
(1)求manfen5.com 满分网(用k表示);
(2)当k>0时,manfen5.com 满分网对任意的t∈[-1,1]恒成立,求实数x取值范围.
查看答案
已知等差数列{an}的首项a1=1,公差d=1,前n项和为Snmanfen5.com 满分网
(1)求数列{bn}的通项公式;
(2)求证:b1+b2+…+bn<2.
查看答案
关于函数f(x)=lgmanfen5.com 满分网(x≠0,x∈R),有下列命题:
①函数y=f(x)的图象关于y轴对称;
②当x>0时,f(x)是增函数,当x<0时,f(x)是减函数;
③函数f(x)的最小值是lg2;
④当-1<x<0或x>1时,f(x)为增函数;
⑤f(x)无最大值,也无最小值.
其中正确命题的序号是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.