满分5 > 高中数学试题 >

某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t元(其中...

某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t元(其中t为常数,且2≤t≤5),设该工厂每件玩具的出厂价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.
(1)求该工厂的日利润y(元)与每件玩具的出厂价x元的函数关系式;
(2)当每件玩具的日售价为多少元时,该工厂的利润y最大,并求y的最大值.
(1)由条件“日销售量与ex(e为自然对数的底数)成反比例”可设日销量为,根据日利润y=每件的利润×件数,建立函数关系式,注意实际问题自变量的范围. (2)先对函数进行求导,求出极值点,讨论极值是否在35≤x≤41范围内,利用单调性求出函数的最值. 【解析】 (Ⅰ)设日销量为; 则.(2分) 则日售量为,∴日利润. ∴,其中35≤x≤41.(6分) (Ⅱ),令y′=0得x=31+t.(8分) ①当2≤t≤4时,33≤31+t≤35.∴当35≤x≤41时,y′≤0. ∴当x=35时,y取最大值,最大值为10(5-t)e5.(11分) ②当4<t≤5时,35<t+31≤36,函数y在[35,t+31]上单调递增, 在[t+31,41]上单减.∴当x=t+31时,y取最大值10e9-t. ∴当2≤t≤4时,x=35时,日利润y最大值为10(5-t)e5元 当4<t≤5时,x=31+t时,日利润y最大值为10e9-t元.
复制答案
考点分析:
相关试题推荐
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求四棱锥P-ABCD的体积V;
(2)若F为PC的中点,求证PC⊥平面AEF;
(3)求证CE∥平面PAB.

manfen5.com 满分网 查看答案
已知复数z1=bcosC+(a+c)i,z2=(2a-c)cosB+4i,且z1=z2,其中A、B、C为△ABC的内角,a、b、c为角A、B、C所对的边.
(Ⅰ)求角B的大小;
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的结论:
①函数f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
②点manfen5.com 满分网是函数y=f(x)图象的一个对称中心;
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是    查看答案
已知函数manfen5.com 满分网,若方程f(x)=0有3个不等的实根,则实数a的取值范围是    查看答案
设双曲线manfen5.com 满分网的半焦距为c.已知原点到直线l:bx+ay=ab的距离等于manfen5.com 满分网,则c的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.