满分5 > 高中数学试题 >

有一个几何体的三视图如图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C....

有一个几何体的三视图如图所示,这个几何体应是一个( )
manfen5.com 满分网
A.棱台
B.棱锥
C.棱柱
D.都不对
根据主视图、左视图、俯视图的形状,将它们相交得到几何体的形状. 【解析】 由三视图知,从正面和侧面看都是梯形, 从上面看为正方形,下面看是正方形, 并且可以想象到连接相应顶点的四条线段就是几何体的四条侧棱, 故这个三视图是四棱台.  故选A.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,则manfen5.com 满分网的值是( )
A.9
B.-9
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若函数y=f(x)的定义域是[0,2],则函数manfen5.com 满分网的定义域是( )
A.[0,1]
B.[0,1)
C.[0,1)∪(1,4]
D.(0,1)
查看答案
如果全集U=R,A={x|2<x≤4},B={3,4},则A∩(∁UB)=( )
A.(2,3)∪(3,4)
B.(2,4)
C.(2,3)∪(3,4]
D.(2,4]
查看答案
对于各项均为整数的数列{an},如果满足ai+i(i=1,2,3,…)为完全平方数,则称数列{an}具有“P性质”;
不论数列{an}是否具有“P性质”,如果存在与{an}不是同一数列的{bn},且{bn}同时满足下面两个条件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一个排列;②数列{bn}具有“P性质”,则称数列{an}具有“变换P性质”.
(Ⅰ)设数列{an}的前n项和manfen5.com 满分网,证明数列{an}具有“P性质”;
(Ⅱ)试判断数列1,2,3,4,5和数列1,2,3,…,11是否具有“变换P性质”,具有此性质的数列请写出相应的数列{bn},不具此性质的说明理由;
(Ⅲ)对于有限项数列A:1,2,3,…,n,某人已经验证当n∈[12,m2](m≥5)时,数列A具有“变换P性质”,试证明:当n∈[m2+1,(m+1)2]时,数列A也具有“变换P性质”.
查看答案
已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2
(1)求a,b的值;
(2)若方程f(x)+m=0在manfen5.com 满分网内有两个不等实根,求实数m的取值范围(其中e为自然对数的底,e≈2.7);
(3)令g(x)=f(x)-nx,如果g(x)图象与x轴交于A(x1,0),B(x2,0),x1<x2,AB中点为C(x,0),求证:g′(x)≠0.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.