满分5 > 高中数学试题 >

已知a∈R,函数,g(x)=(lnx-1)ex+x(其中e为自然对数的底数). ...

已知a∈R,函数manfen5.com 满分网,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直?若存在,求出x的值;若不存在,请说明理由.
(1)讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值; (2)将曲线y=g(x)在点x=x处的切线与y轴垂直转化成方程g'(x)=0有实数解,只需研究导函数的最小值即可. 【解析】 (1)∵, ∴ 令f'(x)=0,得x=a. ①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值. ②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减, 当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增, 所以当x=a时,函数f(x)取得最小值lna ③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减, 所以当x=e时,函数f(x)取得最小值. .综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值; 当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna; 当a≥e时,函数f(x)在区间(0,e]上的最小值为. (2)∵g(x)=(lnx-1)ex+x,x∈(0,e], ∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=. 由(1)可知,当a=1时,. 此时f(x)在区间(0,e]上的最小值为ln1=0,即.(10分) 当x∈(0,e],,, ∴. 曲线y=g(x)在点x=x处的切线与y轴垂直等价于方程g'(x)=0有实数解.(13分) 而g'(x)>0,即方程g'(x)=0无实数解.、故不存在x∈(0,e],使曲线y=g(x)在点x=x处的切线与y轴垂直.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,manfen5.com 满分网
(Ⅰ)求证:OM∥平面ABD;
(Ⅱ)求证:平面ABC⊥平面MDO;
(Ⅲ)求三棱锥M-ABD的体积.
查看答案
已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域manfen5.com 满分网内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
已知函数manfen5.com 满分网
(1)设manfen5.com 满分网,且manfen5.com 满分网,求θ的值;
(2)在△ABC中,AB=1,manfen5.com 满分网,且△ABC的面积为manfen5.com 满分网,求sinA+sinB的值.
查看答案
已知函数f(x)=manfen5.com 满分网,下列结论正确的是   
(1)方程f(x)=0在区间[-100,100]上实数解的个数是201个;
(2)函数f(x)是周期函数;
(3)函数f(x)既有最大值又有最小值;
(4)函数f(x)的定义域是R,且其图象有对称轴. 查看答案
设面积为S的平面四边形的第i条边的边长为ai(i=1,2,3,4),P是该四边形内一点,点P到第i条边的距离记为manfen5.com 满分网,类比上述结论,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),Q是该三棱锥内的一点,点Q到第i个面的距离记为di,若manfen5.com 满分网等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.