满分5 > 高中数学试题 >

从四名男生和三名女生中任选3人参加演讲比赛. (Ⅰ)求所选3人中至少有一名女生的...

从四名男生和三名女生中任选3人参加演讲比赛.
(Ⅰ)求所选3人中至少有一名女生的概率;
(Ⅱ)ξ表示所选参加演讲比赛的人员中男生的人数,求ξ的分布列和数学期望.
(Ⅰ)记事件A为“所选3人中至少有一名女生”,分析可得,其对立事件为“所选的3人全是男生”,借助组合公式与对立事件的概率公式,计算可得答案; (Ⅱ)根据题意,易得 ξ 的可能取值为:0,1,2,3;分别求得其概率,进而可得分步列,由期望的计算公式,计算可得答案. 【解析】 (Ⅰ)记事件A为“所选3人中至少有一名女生”, 则其对立事件为“所选的3人全是男生”. ∴.(6分) (Ⅱ)ξ的可能取值为:0,1,2,3. ,,,.(8分) ∴ξ的分布列为: .(12分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为manfen5.com 满分网
(Ⅰ)求ω和φ的值;
(Ⅱ)将函数y=f(x)的图象向右平移manfen5.com 满分网个单位后,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
A.(坐标系与参数方程选做题)在极坐标系中,两点manfen5.com 满分网manfen5.com 满分网间的距离是   
B.(不等式选讲选做题)若不等式|x+1|+|x-2|>5的解集为   
C.(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且BC=6,∠BAC=120°,则圆O的面积等于   
manfen5.com 满分网 查看答案
给出定义:若m-manfen5.com 满分网<x≤m+manfen5.com 满分网(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,manfen5.com 满分网];
②函数y=f(x)的图象关于直线x=manfen5.com 满分网(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-manfen5.com 满分网manfen5.com 满分网]上是增函数.
其中正确的命题的序号    查看答案
如果执行下面的程序框图,那么输出的S等于    manfen5.com 满分网 查看答案
有一个容量为56的样本数据,分组后,组距与频数如下:[0,5]3个,[5,10]5个,[10,15]7个,[15,20)11个,[20,25)12个,[25,30)9个,[30,35)5个,[35,40)4个,则样本在区间[15,35]上的频率为    .(分数表示) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.