满分5 > 高中数学试题 >

如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=...

manfen5.com 满分网如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.
(1)求证:PA⊥EF;
(2)求二面角D-FG-E的余弦值.
(1)以D为原点,建立如图所示的空间直角坐标系D-xyz,求出各顶点的坐标及直线与PA与EF的方向向量,然后代入向量数量积公式,易得两个向量的数量积为0,故PA⊥EF; (2)在(1)中所示的坐标系中,我们求也平面DFG和平面EFG的法向量,然后代入二面角的向量法夹角公式中,即可得到二面角D-FG-E的余弦值. 证明:(1)以D为原点,建立如图所示的空间直角坐标系D-xyz, 则F(0,0.1),E(0,1,1),P(0,0,2),A(2,0,0), ∴、 ∵, ∴PA⊥EF 【解析】 (2)D(0,0,0),F(0,0,1),G(1,2,0), =(1,2,-1) 设平面DFG的法向量为=(x1,y1,z1), ∵ ∴ 令y1=1,得=(-2,1,0)是平面DFG的一个法向量、 设平面EFG的法向量为=(x2,y2,z2), ∴∴ ,令z2=1,得=(1,0,1)是平面EFG的一个法向量、 ∵ 设二面角D-EG-E的平面角为θ, 则θ=<,>、 所以二面角D-FG-G的余弦值为
复制答案
考点分析:
相关试题推荐
从四名男生和三名女生中任选3人参加演讲比赛.
(Ⅰ)求所选3人中至少有一名女生的概率;
(Ⅱ)ξ表示所选参加演讲比赛的人员中男生的人数,求ξ的分布列和数学期望.
查看答案
已知函数manfen5.com 满分网(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为manfen5.com 满分网
(Ⅰ)求ω和φ的值;
(Ⅱ)将函数y=f(x)的图象向右平移manfen5.com 满分网个单位后,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
A.(坐标系与参数方程选做题)在极坐标系中,两点manfen5.com 满分网manfen5.com 满分网间的距离是   
B.(不等式选讲选做题)若不等式|x+1|+|x-2|>5的解集为   
C.(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且BC=6,∠BAC=120°,则圆O的面积等于   
manfen5.com 满分网 查看答案
给出定义:若m-manfen5.com 满分网<x≤m+manfen5.com 满分网(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,manfen5.com 满分网];
②函数y=f(x)的图象关于直线x=manfen5.com 满分网(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-manfen5.com 满分网manfen5.com 满分网]上是增函数.
其中正确的命题的序号    查看答案
如果执行下面的程序框图,那么输出的S等于    manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.