满分5 > 高中数学试题 >

已知椭圆C的焦点在x轴上,一个顶点的坐标是(0,1),离心率等于. (Ⅰ)求椭圆...

已知椭圆C的焦点在x轴上,一个顶点的坐标是(0,1),离心率等于manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若manfen5.com 满分网manfen5.com 满分网,求证:λ12为定值.
(Ⅰ)由题意知b=1,,由此能够导出椭圆C的方程. (Ⅱ)方法一:设A,B,M点的坐标分别为A(x1,y1),B(x2,y2),由,得λ12+10λ1+5-5y2=0.由得λ22+10λ2+5-5y2=0.λ1,λ2是方程x2+10x+5-5y2=0的两个根,∴λ1+λ2=-10. 方法二:设直线l的斜率为k,则直线l的方程是y=k(x-2).将直线l的方程代入到椭圆C的方程中,消去y并整理得(1+5k2)x2-20k2x+20k2-5=0.然后利用根与系数的关系证明λ1+λ2为定值. 【解析】 (Ⅰ)设椭圆C的方程为, 则由题意知b=1.∴. 即.∴a2=5. ∴椭圆C的方程为; (Ⅱ)方法一:设A,B,M点的坐标分别为 A(x1,y1),B(x2,y2),M(0,y), 又易知F点的坐标为(2,0). ∵,∴(x1,y1-y)=λ1(2-x1,-y1). ∴,. 将A点坐标代入到椭圆方程中得:, 去分母整理,得λ12+10λ1+5-5y2=0. 同理,由可得:λ22+10λ2+5-5y2=0. ∴λ1,λ2是方程x2+10x+5-5y2=0的两个根, ∴λ1+λ2=-10. 方法二:设A,B,M点的坐标分别为A (x1,y1),B(x2,y2),M(0,y), 又易知F点的坐标为(2,0). 显然直线l存在斜率,设直线l的斜率为k, 则直线l的方程是y=k(x-2). 将直线l的方程代入到椭圆C的方程中, 消去y并整理得(1+5k2)x2-20k2x+20k2-5=0. ∴,. 又∵,, 将各点坐标代入得,. .
复制答案
考点分析:
相关试题推荐
已知实数a≠0,函数f(x)=ax(x-2)2(x∈R).
(Ⅰ)若f(x)的图象在点(1,f(1))处的切线与直线27x+y-8=0平行,求函数f(x)的极值;
(Ⅱ)若对任意x∈[-2,1],不等式manfen5.com 满分网恒成立,求实数a的取值范围.
查看答案
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)记数列manfen5.com 满分网的前n项和为Sn,证明:Sn<6.
查看答案
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.
(Ⅰ)求证:PA⊥EF;
(Ⅱ)求证:FG∥平面PAB.

manfen5.com 满分网 查看答案
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中随机抽取1人为优秀的概率为manfen5.com 满分网
(Ⅰ)请完成上面的列联表;
(Ⅱ)从105名学生中选出10名学生组成参观团,若采用下面的方法选取:先用简单随机抽样从105人中剔除5人,剩下的100人再按系统抽样的方法抽取10人,请写出在105人 中,每人入选的概率.(不必写过程)
(Ⅲ)把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和作为被抽取人的序号,试求抽到6号或10号的概率.
查看答案
已知函数manfen5.com 满分网(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为manfen5.com 满分网
(Ⅰ)求ω和φ的值;
(Ⅱ)将函数y=f(x)的图象向右平移manfen5.com 满分网个单位后,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.