考点分析:
相关试题推荐
已知椭圆C的焦点在x轴上,一个顶点的坐标是(0,1),离心率等于
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于M点,若
,
,求证:λ
1+λ
2为定值.
查看答案
已知实数a≠0,函数f(x)=ax(x-2)
2(x∈R).
(Ⅰ)若f(x)的图象在点(1,f(1))处的切线与直线27x+y-8=0平行,求函数f(x)的极值;
(Ⅱ)若对任意x∈[-2,1],不等式
恒成立,求实数a的取值范围.
查看答案
设{a
n}是等差数列,{b
n}是各项都为正数的等比数列,且a
1=b
1=1,a
3+b
5=21,a
5+b
3=13.
(Ⅰ)求{a
n},{b
n}的通项公式;
(Ⅱ)记数列
的前n项和为S
n,证明:S
n<6.
查看答案
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.
(Ⅰ)求证:PA⊥EF;
(Ⅱ)求证:FG∥平面PAB.
查看答案
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
已知在全部105人中随机抽取1人为优秀的概率为
(Ⅰ)请完成上面的列联表;
(Ⅱ)从105名学生中选出10名学生组成参观团,若采用下面的方法选取:先用简单随机抽样从105人中剔除5人,剩下的100人再按系统抽样的方法抽取10人,请写出在105人 中,每人入选的概率.(不必写过程)
(Ⅲ)把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和作为被抽取人的序号,试求抽到6号或10号的概率.
查看答案