满分5 > 高中数学试题 >

(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t)...

(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常数.
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)

manfen5.com 满分网
(1)注意到A1(2,0),A5(-2,0),且半径为2的圆C1经过Ai,故线段A1A5就是所求圆的直径,O为圆心,写出圆的标准方程即可 (2)椭圆长轴长是4,即a=2,故可设椭圆方程为,因为AiF1+AiF2=4,由椭圆定义知点A2(1,t)在椭圆上,代入椭圆方程即可用b表示t; (3)利用焦半径公式,AiF1=exi+a,再利用椭圆定义,即可得AiF1-AiF2=2AiF1-2a=2exi,可见数列{an}的项的大小只与点Ai的横坐标有关,进而易证an+1<an. 【解析】 (1)∵A1A5=4,则A1A5为⊙C1的直径,∴圆心为A1,A5的中点(0,0) ∴⊙C1的方程是x2+y2=4, ∵A2(1,t),A3(0,b)在圆上, ∴b=2,; (2)∵椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4, ∴椭圆C2的方程是,将A2(1,t)代入, 得,得; (3)设Ai的坐标是(xi,yi),∵椭圆C2的左准线为, ∴,则,(其中为椭圆的离心率) AiF1-AiF2=2AiF1-2a=2exi 由于{xi}递减,则对n=1,2,3,4都有an+1<an.
复制答案
考点分析:
相关试题推荐
已知数列{an}中,a1=-1,且 (n+1)an,(n+2)an+1,n 成等差数列.
(Ⅰ)设bn=(n+1)an-n+2,求证:数列{bn}是等比数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)(仅理科做) 若an-bn≤kn对一切n∈N*恒成立,求实数k的取值范围.
查看答案
manfen5.com 满分网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=manfen5.com 满分网,点E在PD上,且PE:ED=2:1.
(I)证明PA⊥平面ABCD;
(II)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
查看答案
质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.
(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;
(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分歧布列及期望Eξ.
查看答案
(文科做)由掷骰子两次确定点M(x,y)横,纵坐标,第一次确定横坐标,第二次确定纵坐标,
(1)求掷两次所得的横,纵坐标和能被5整除的概率
(2)求掷两次所得的点在直线y=2x上的概率
(3)求掷两次所得的点到两点A(-1,0),B(1,0)距离的和小于6的概率.
查看答案
在△ABC中,设manfen5.com 满分网
(1)求证:△ABC为等腰三角形;
(2)若manfen5.com 满分网的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.