满分5 > 高中数学试题 >

已知函数f(x)=x3+ax2+bx+c. (1)若函数f(x)在区间[-1,0...

已知函数f(x)=x3+ax2+bx+c.
(1)若函数f(x)在区间[-1,0]上是单调递减函数,求a2+b2的最小值;
(2)若函数f(x)的三个零点分别为manfen5.com 满分网,求证:a2=2b+3.
(1)由函数在区间[-1,0]上是单调递减,得到导函数小于等于0恒成立即f′(-1)≤0且f′(0)≤0代入得到一个不等式组,可以把而a2+b2可视为平面区域内的点到原点的距离的平方,则由点到直线的距离公式求出即可得到最小值; (2)f(1)=0得到a、b、c的关系式,利用关系式化简f(x),因为函数f(x)的三个零点分别为,所以方程的两根为,利用根与系数的关系化简可得证. 【解析】 (1)依题意,f′(x)=3x2+2ax+b≤0,在[-1,0]上恒成立. 只需要即可,也即 ,而a2+b2可视为平面区域 内的点到原点的距离的平方,由点到直线的距离公式d2==, ∴a2+b2的最小值为. (2)由f(1)=0,得c=-a-b-1, ∴f(x)=x3+ax2+bx+c=x3+ax2+bx-(a+b+1)=(x-1)[x2+(a+1)x+(a+b+1)] 因为函数f(x)的三个零点分别为, ∴方程x2+(a+1)x+(a+b+1)=0的两根是,, ∴+=-(a+1),=a+b+1. =(a+1)2即1-t+2+1+t=(a+1)2 ∴2+2(a+b+1)=(a+1)2 ∴a2=2b+3
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该双曲线C2:以椭圆C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限内的任意一点,且manfen5.com 满分网
(1)设manfen5.com 满分网的最大值为2c2,求椭圆离心率;
(2)若椭圆离心率manfen5.com 满分网时,是否存在λ,总有∠BAF1=λ∠BF1A成立.
查看答案
(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常数.
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)

manfen5.com 满分网 查看答案
已知数列{an}中,a1=-1,且 (n+1)an,(n+2)an+1,n 成等差数列.
(Ⅰ)设bn=(n+1)an-n+2,求证:数列{bn}是等比数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)(仅理科做) 若an-bn≤kn对一切n∈N*恒成立,求实数k的取值范围.
查看答案
manfen5.com 满分网如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=manfen5.com 满分网,点E在PD上,且PE:ED=2:1.
(I)证明PA⊥平面ABCD;
(II)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
查看答案
质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4,将4个这样的玩具同时抛掷于桌面上.
(1)求与桌面接触的4个面上的4个数的乘积不能被4整除的概率;
(2)设ξ为与桌面接触的4个面上数字中偶数的个数,求ξ的分歧布列及期望Eξ.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.