满分5 > 高中数学试题 >

已知,是两个不共线的单位向量,向量=3-,=t+2,且∥,则t=( ) A.-6...

已知manfen5.com 满分网manfen5.com 满分网是两个不共线的单位向量,向量manfen5.com 满分网=3manfen5.com 满分网-manfen5.com 满分网manfen5.com 满分网=tmanfen5.com 满分网+2manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网,则t=( )
A.-6
B.6
C.-3
D.3
由于已知=3-,=t+2,由题意可得,必存在一个实数λ,使得,由此等式得到t的方程求出k的值,即可选出正确选项 【解析】 由题意,故必存在一个实数λ,使得, ∴= ∴ 解得t=-6 故选A
复制答案
考点分析:
相关试题推荐
若复数manfen5.com 满分网(a∈R,i为虚数单位位)是纯虚数,则实数a的值为( )
A.-2
B.4
C.-6
D.6
查看答案
(理科做)已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在区间(1,2)上为增函数.
(1)求实数a的值;
(2)当-1<m<0时,判断方程f(x)=2g(x)+m的解的个数,并说明理由;
(3)设函数y=f(bx)(其中0<b<1)的图象C1与函数y=g(x)的图象C2交于P、Q,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N.证明:曲线C1在点M处的切线与曲线C2在点N处的切线不平行.
查看答案
已知函数f(x)=x3+ax2+bx+c.
(1)若函数f(x)在区间[-1,0]上是单调递减函数,求a2+b2的最小值;
(2)若函数f(x)的三个零点分别为manfen5.com 满分网,求证:a2=2b+3.
查看答案
已知椭圆manfen5.com 满分网的左、右焦点分别为F1,F2,右顶点为A,P是椭圆C1上任意一点,设该双曲线C2:以椭圆C1的焦点为顶点,顶点为焦点,B是双曲线C2在第一象限内的任意一点,且manfen5.com 满分网
(1)设manfen5.com 满分网的最大值为2c2,求椭圆离心率;
(2)若椭圆离心率manfen5.com 满分网时,是否存在λ,总有∠BAF1=λ∠BF1A成立.
查看答案
(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常数.
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.