满分5 > 高中数学试题 >

已知,g(x)=ex-e2-x+f(x), (1)若f(x)在处取得极值,试求c...

已知manfen5.com 满分网,g(x)=ex-e2-x+f(x),
(1)若f(x)在manfen5.com 满分网处取得极值,试求c的值和f(x)的单调增区间;
(2)如图所示,若函数y=f(x)的图象在[a,b]连续光滑,试猜想拉格朗日中值定理:即一定存在c∈(a,b),使得manfen5.com 满分网,利用这条性质证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4.

manfen5.com 满分网
(1)先求f′(x)由,求得c,再用f′(x)>0求得增区间. (2)先化简g(x)=ex-e2-x+f(x)═,则g′(x)=由猜想知对于函数y=g(x)图象上任意两点A、B,在A、B之间一定存在一点C(c,g′(c)),有g′(x)≥2e-4. 【解析】 (1)f′(x)=2x2-4x+c,(1分) 依题意,有,即.(2分) ∴,f′(x)=2x2-4x-2. 令f′(x)>0,得或,(5分) 从而f(x)的单调增区间为:及;(6分) (2);g(x)=ex-e2-x+f(x)═,(7分) g′(x)=ex+e2-x+2x2-4x-2(9分)=(12分) 由(2)知,对于函数y=g(x)图象上任意两点A、B,在A、B之间一定存在一点C(c,g′(c)),使得g′(c)=KAB,又g′(x)≥2e-4,故有KAB=g′(c)≥2e-4,证毕.(14分)
复制答案
考点分析:
相关试题推荐
如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=manfen5.com 满分网
(I)求证:AO⊥平面BCD;
(II)求异面直线AB与CD所成角的大小;
(III)求点E到平面ACD的距离.

manfen5.com 满分网 查看答案
某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图)
(Ⅰ)若设休闲区的长和宽的比manfen5.com 满分网,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(Ⅱ)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

manfen5.com 满分网 查看答案
已知数列{an}是首项为a1=manfen5.com 满分网,公比q=manfen5.com 满分网的等比数列,设manfen5.com 满分网(n∈N*),cn=anbn(n∈N*
(1)求数列{bn}的通项公式;
(2)求数列{cn}的前n项和Sn
查看答案
已知△ABC的内角A、B、C所对的边分别为a、b、c,且a=2,manfen5.com 满分网
(Ⅰ)若b=4,求sinA的值;
(Ⅱ)若△ABC的面积S=4,求b、c的值.
查看答案
已知函数manfen5.com 满分网
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)证明f(x)在(0,1)内单调递减.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.