满分5 > 高中数学试题 >

如图,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,且PA=AB=2,...

manfen5.com 满分网如图,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,且PA=AB=2,E、F分别是AB与PD的中点.
(Ⅰ)求证:PC⊥BD;
(Ⅱ)求证:AF∥平面PEC;
(Ⅲ)求二面角P-EC-D的大小.
(1)由于AC是斜线PC在平面ABCD上的射影,故可利用三垂线定理,转化为证明:AC⊥BD (2)要证明AF∥平面PEC,关键是要找到平面PEC中与AF平行的直线 (3)要求二面角的大小,要先求出二面角的平面角,然后转化为解三角形问题. 【解析】 (I)连接AC,则AC⊥BD. ∵PA⊥平面ABCD,AC是斜线, PC在平面ABCD上的射影, ∴由三垂线定理得PC⊥BD. (II)取PC的中点K,连接FK、EK, 则四边形AEKF是平行四边形, ∴AF∥EK,又EK⊂平面PEC, AF⊄平面PEC, ∴AF∥平面PEC. (III)延长DA、CE交于M,过A作AH⊥CM于H, 连接PH,由于PA⊥平面ABCD,可得PH⊥CM. ∴∠PHA为所求二面角P-EC-D的平面角. ∵E为AB的中点,AE∥CD,∴AM=AD=2. 在△AME中,∠MAE=120°, 由余弦定理得EM2=AM2+AE2-2AM•AEcos120°=7, ∴, ∴, ∴. ∴二面角P-EC-D的大小为arctan
复制答案
考点分析:
相关试题推荐
四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1).
纪念币ABCD
概率manfen5.com 满分网manfen5.com 满分网aa
这四个纪念币同时投掷一次,设ξ表示出现正面向上的个数.
(1)求ξ的分布列及数学期望;
(2)在概率P (ξ=i ) (i=0,1,2,3,4)中,若P (ξ=2 )的值最大,求a的取值范围.
查看答案
已知f (x)=2cos2 x+2manfen5.com 满分网sin xcos x+a (a为常数).
(1)求f (x)的单调递增区间;
(2)若f (x)在区间[-manfen5.com 满分网manfen5.com 满分网]上的最大值与最小值之和为3,求a的值.
查看答案
在△ABC中,给出下列四个命题:①若sin2A=sin2B,则△ABC为等腰三角形;
②若sinA=cosB,则△ABC是直角三角形;
③若cosA•cosB•cosC<0,则△ABC是钝角三角形;
④若cos(A-B)•cos(B-C)•cos(C-A)=1,则△ABC是等边三角形.
以上命题正确的是    (填命题序号). 查看答案
已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为    查看答案
已知函数manfen5.com 满分网,在x=1处连续,则实数a的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.