满分5 > 高中数学试题 >

设等差数列{an}的前n项和为Sn,若a4=9,a6=11,则S9等于( ) A...

设等差数列{an}的前n项和为Sn,若a4=9,a6=11,则S9等于( )
A.180
B.90
C.72
D.10
由a4=9,a6=11利用等差数列的性质可得a1+a9=a4+a6=20,代入等差数列的前n项和公式可求 【解析】 ∵a4=9,a6=11 由等差数列的性质可得a1+a9=a4+a6=20 故选B
复制答案
考点分析:
相关试题推荐
在单调递增数列{an}中,a1=2,不等式(n+1)an≥na2n对任意n∈N*都成立.
(Ⅰ)求a2的取值范围;
(Ⅱ)判断数列{an}能否为等比数列?说明理由;
(Ⅲ)设manfen5.com 满分网manfen5.com 满分网,求证:对任意的n∈N*manfen5.com 满分网
查看答案
在平面直角坐标系xOy中,动点P到定点manfen5.com 满分网的距离比点P到x轴的距离大manfen5.com 满分网,设动点P的轨迹为曲线C,直线l:y=kx+1交曲线C于A,B两点,M是线段AB的中点,过点M作x轴的垂线交曲线C于点N.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:曲线C在点N处的切线与AB平行;
(Ⅲ)若曲线C上存在关于直线l对称的两点,求k的取值范围.
查看答案
已知函数f(x)=x2-alnx(a∈R).
(Ⅰ)若a=2,求证:f(x)在(1,+∞)上是增函数;
(Ⅱ)求f(x)在[1,e]上的最小值.
查看答案
甲、乙两人进行围棋比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或下满6局时停止.设甲在每局中获胜的概率为p(p>manfen5.com 满分网),且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为manfen5.com 满分网
(1)求p的值;
(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,D,E分别为BC,BB1的中点,四边形B1BCC1是边长为6的正方形.
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)求证:CE⊥平面AC1D;
(Ⅲ)求二面角C-AC1-D的余弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.