满分5 > 高中数学试题 >

如图所示,在正方体ABCD-A1B1C1D1中,AB=a,E为棱A1D1中点. ...

如图所示,在正方体ABCD-A1B1C1D1中,AB=a,E为棱A1D1中点.
(I)求二面角E-AC-B的正切值;
(II)求直线A1C1到平面EAC的距离.

manfen5.com 满分网
(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC与F,连接EF,我们可得∠EFH即为二面角E-AC-B的补角,解三角形EFH后,即可求出二面角E-AC-B的正切值; (II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离,利用等体积法,我们根据=,即可求出直线A1C1到平面EAC的距离. 【解析】 (I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC与F,连接EF, 则EF在平面ABCD内的射影为HF,由三垂线定理得EF⊥AC,, ∴∠EFH即为二面角E-AC-B的补角 ∵EH=a,HF=BD= ∴∠tan∠EFH===2 ∴二面角E-AC-B的正切值为-2…6分 (II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离d,…8分 ∵= ∴S△EAC•d= ∵EF=== ∴S△EAC=•AC•EF=•a•= 而=••a= ∴•d=•a ∴d= ∴直线A1C1到平面EAC的距离
复制答案
考点分析:
相关试题推荐
已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.
(I)求男生被抽取的人数和女生被抽取的人数;
(I)若从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;
(II)若本班学生考前心理状态好的概率为0.8,求调查中恰有3人心理状态良好的概率.
查看答案
已知manfen5.com 满分网=(cosx+sinx,sinx),manfen5.com 满分网=(cosx-sinx,2cosx).
(I)求证:向量manfen5.com 满分网与向量manfen5.com 满分网不可能平行;
(II)若manfen5.com 满分网manfen5.com 满分网=1,且x∈[-π,0],求x的值.
查看答案
在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设manfen5.com 满分网
①若∃x∈(2,+∞),使f(x)=m成立,则实数m的取值范围为   
②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为    查看答案
函数manfen5.com 满分网,在区间(-π,π)上单调递增,则实数φ的取值范围为    查看答案
已知过椭圆manfen5.com 满分网的右焦点在双曲线manfen5.com 满分网的右准线上,则双曲线的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.