满分5 > 高中数学试题 >

某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,...

某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
manfen5.com 满分网
(Ⅰ)求全班人数;
(Ⅱ)求分数在[80,90)之间的人数;并计算频率分布直方图中[80,90)间的矩形的高;
(Ⅲ)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
(1)根据条件所给的茎叶图看出分数在[50,60)之间的频数,由频率分布直方图看出分数在[50,60)之间的频率,根据频率、频数和样本容量之间的关系解出样本容量. (2)算出分数在[80,90)之间的人数,算出分数在[80,90)之间的频率,根据小矩形的面积是这一段数据的频率,做出矩形的高. (3)由题意知本题是一个古典概型,试验包含的所有事件可以通过列举得到结果数,看出满足条件的事件数,根据古典概型公式得到结果. 【解析】 (Ⅰ)由茎叶图知:分数在[50,60)之间的频数为2. 由频率分布直方图知:分数在[50,60)之间的频率为0.008×10=0.08. ∴全班人数为人. (Ⅱ)∵分数在[80,90)之间的人数为25-2-7-10-2=4人 ∴分数在[80,90)之间的频率为 ∴频率分布直方图中[80,90)间的矩形的高为. (Ⅲ)将[80,90)之间的4个分数编号为1,2,3,4; [90,100]之间的2个分数编号为5,6. 则在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4), (1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5), (3,6),(4,5),(4,6),(5,6)共15个. 至少有一个在[90,100]之间的基本事件有9个, ∴至少有一份分数在[90,100]之间的概率是.
复制答案
考点分析:
相关试题推荐
如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且manfen5.com 满分网,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)设函数manfen5.com 满分网,求f(α)的值域.

manfen5.com 满分网 查看答案
已知数列{an}的通项为an=(2n-1)•2n,求其前n项和Sn时,我们用错位相减法,即
由Sn=1•2+3•22+5•23+…+(2n-1)•2n得2Sn=1•22+3•23+5•24+…+(2n-1)•2n+1
两式相减得-Sn=2+2•22+2•23+…+2•2n-(2n-1)•2n+1
求出Sn=2-(2-2n)•2n+1.类比推广以上方法,若数列{bn}的通项为bn=n2•2n,则其前n项和Tn=    查看答案
以下有四种说法:
(1)若f′(x)=0,则f(x)在x=x处取得极值;
(2)由变量x和y的数据得到其回归直线方程manfen5.com 满分网,则l一定经过点manfen5.com 满分网
(3)若p∨q为真,p∧q为假,则p与q必为一真一假;
(4)函数manfen5.com 满分网最小正周期为π,其图象的一条对称轴为manfen5.com 满分网
以上四种说法,其中正确说法的序号为    查看答案
在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b22有零点的概率为    查看答案
函数manfen5.com 满分网,右图是计算函数值y的程序程框图,在空白框中应该填上   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.