满分5 > 高中数学试题 >

已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},则A∩...

已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},则A∩(∁UB)=( )
A.{x|x>1}
B.{x|x>0}
C.{x|0<x<1}
D.{x|x<0}
解指数不等式可以求出集合A,解对数不等式可以求出集合B,进而求出∁UB,根据集合并集运算的定义,代入可得答案. 【解析】 ∵A={x|0<2x<1}{x|x<0}, B={x|log3x>0}={x|x>1}, 所以CUB={x|x≤1}, ∴A∩(CUB)={x|x<0}. 故选D
复制答案
考点分析:
相关试题推荐
已知曲线C1manfen5.com 满分网(e为自然对数的底数),曲线C2:y=2elnx和直线l:y=2x.
(1)求证:直线l与曲线C1,C2都相切,且切于同一点;
(2)设直线x=t(t>0)与曲线C1,C2及直线l分别相交于M,N,P,记f(t)=|PM|-|NP|,求f(t)在[e-3,e3]上的最大值;
(3)设直线x=em(m=0,1,2,3┅┅)与曲线C1和C2的交点分别为Am和Bm,问是否存在正整数n,使得AB=AnBn?若存在,求出n;若不存在,请说明理由. (本小题参考数据e≈2.7).
查看答案
设无穷等差数列{an}的前n项和为Sn
(Ⅰ)若首项a1=manfen5.com 满分网,公差d=1.求满足manfen5.com 满分网的正整数k;
(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有manfen5.com 满分网成立.
查看答案
已知直线l:y=kx+2(k为常数)过椭圆manfen5.com 满分网+manfen5.com 满分网=1((a>b>0)的上顶点B和左焦点F,直线l被圆x2+y2=4截得的弦长为d、
(1)若d=2manfen5.com 满分网,求k的值;
(2)若d≥manfen5.com 满分网manfen5.com 满分网,求椭圆离心率e的取值范围.
查看答案
如图,E、F分别为直角三角形ABC的直角边AC和斜边AB的中点,沿EF将△AEF折起到△A′EF的位置,连接A′B、A′C,P为A′C的中点.
(1)求证:EP∥平面A′FB;
(2)求证:平面A′EC⊥平面A′BC;
(3)求证:AA′⊥平面A′BC.

manfen5.com 满分网 查看答案
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
manfen5.com 满分网
(Ⅰ)求全班人数;
(Ⅱ)求分数在[80,90)之间的人数;并计算频率分布直方图中[80,90)间的矩形的高;
(Ⅲ)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.