满分5 > 高中数学试题 >

设x,y∈R,那么“x>y>0”是“”的( ) A.必要不充分条件 B.充分不必...

设x,y∈R,那么“x>y>0”是“manfen5.com 满分网”的( )
A.必要不充分条件
B.充分不必要条件
C.充分必要条
D.既不充分又不必要条件
利用不等式的性质判断出“x>y>0”能推出“”,反之不成立,利用充要条件的有关定义得到结论. 【解析】 当x>y>0时成立, 若,则出现x>y>0和x<y<0两种情形, 即若成立,则x>y>0不一定成立, 所以“x>y>0”是“”的充分不必要条件, 故选B.
复制答案
考点分析:
相关试题推荐
已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},则A∩(∁UB)=( )
A.{x|x>1}
B.{x|x>0}
C.{x|0<x<1}
D.{x|x<0}
查看答案
已知曲线C1manfen5.com 满分网(e为自然对数的底数),曲线C2:y=2elnx和直线l:y=2x.
(1)求证:直线l与曲线C1,C2都相切,且切于同一点;
(2)设直线x=t(t>0)与曲线C1,C2及直线l分别相交于M,N,P,记f(t)=|PM|-|NP|,求f(t)在[e-3,e3]上的最大值;
(3)设直线x=em(m=0,1,2,3┅┅)与曲线C1和C2的交点分别为Am和Bm,问是否存在正整数n,使得AB=AnBn?若存在,求出n;若不存在,请说明理由. (本小题参考数据e≈2.7).
查看答案
设无穷等差数列{an}的前n项和为Sn
(Ⅰ)若首项a1=manfen5.com 满分网,公差d=1.求满足manfen5.com 满分网的正整数k;
(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有manfen5.com 满分网成立.
查看答案
已知直线l:y=kx+2(k为常数)过椭圆manfen5.com 满分网+manfen5.com 满分网=1((a>b>0)的上顶点B和左焦点F,直线l被圆x2+y2=4截得的弦长为d、
(1)若d=2manfen5.com 满分网,求k的值;
(2)若d≥manfen5.com 满分网manfen5.com 满分网,求椭圆离心率e的取值范围.
查看答案
如图,E、F分别为直角三角形ABC的直角边AC和斜边AB的中点,沿EF将△AEF折起到△A′EF的位置,连接A′B、A′C,P为A′C的中点.
(1)求证:EP∥平面A′FB;
(2)求证:平面A′EC⊥平面A′BC;
(3)求证:AA′⊥平面A′BC.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.