已知函数f(x)=kx,g(x)=
.
(1)若不等式f(x)=g(x)在区间 (
)内的解的个数;
(2)求证:
.
考点分析:
相关试题推荐
已知两圆Q1:(x+1)
2+y
2=
和Q2:(x-1)
2+y
2=
,动圆P与⊙O1外切,且与⊙O2内切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)过点M(5,0)作直线l与点P的轨迹交于不同两点A、B,试推断是否存在直线l,使得线段AB的垂直平分线经过圆心O2?若存在,求出直线l的方程;若不存在,说明理由.
查看答案
已知数列{a
n}的前n项和是S
n,且满足S
n=2a
n-1
(1)求数列{a
n}的通项公式;
(2)若数列{b
n}满足a
n•b
n=2n-1,求数列{b
n}的前n项和T
n;
(3)请阅读如图所示的流程图,根据流程图判断该算法能否有确定的结果输出?并说明理由.
查看答案
如图,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1AF⊥BF,O为AB的中点,矩形ABCD所在的平面和平面ABEF互相垂直.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)求三棱锥C-BEF的体积.
查看答案
如图,已知平面四边形ABCD中,△BCD为正三角形,AB=AD=2,∠BAD=2θ,记四边形ABCD的面积为S.
(1)将S表示为θ的函数;
(2)求S的最大值及相应的θ值.
查看答案
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],下图是按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(Ⅱ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于l的概率.
查看答案