满分5 > 高中数学试题 >

某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、...

某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为manfen5.com 满分网,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.
(Ⅰ)求此公司决定对该项目投资的概率;
(Ⅱ)记投票结果中“中立”票的张数为随机变量ξ,求ξ的分布列及数学期望Eξ.
(1)此公司决定对该项目投资包括两种情况,一是投票结果中有两张“同意”票,二是投票结果中三张“同意”票,投票相互没有影响,根据符号独立重复试验,得到此公司决定对该项目投资的概率. (2)由题意知投票结果中“中立”票的张数对应的随机变量ξ的可能取值是0、1、2、3,利用独立重复试验的概率公式求出变量的概率,写出分布列和期望. 【解析】 (1)此公司决定对该项目投资包括两种情况, 一是投票结果中有两张“同意”票,二是投票结果中三张“同意”票, 投票相互没有影响 ∴此公司决定对该项目投资的概率为 P=C32()2()+C33()3= (2)ξ的取值为0、1、2、3 P(ξ=0)=(1-)3= P(ξ=1)=C31()()2= P(ξ=2)=C32()2()= P(ξ=3)=()3= ∴ξ的分布列为 ∴Eξ=nP=3×=1
复制答案
考点分析:
相关试题推荐
在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是AB上的动点
(1)若直线ED1与EC垂直,请你确定点E的位置,并求出此时异面直线AD1与EC所成的角
(2)在(1)的条件下求二面角D1-EC-D的正切值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网,函数f(x)=manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网,求函数f(x)的值;
(2)将函数f(x)的图象按向量manfen5.com 满分网=(m,n)(0<m<π)平移,使得平移后的图象关于原点对称,求向量manfen5.com 满分网
查看答案
如图,PT是⊙O的切线,切点为T,直线PA与⊙O交于A、B两点,∠TPA的平分线分别交直线TA、TB于D、E两点,已知PT=2,manfen5.com 满分网,则PA=    manfen5.com 满分网=   
manfen5.com 满分网 查看答案
在极坐标系中,圆ρ=2cosθ的圆心的极坐标是     ,它与方程manfen5.com 满分网(ρ>0)所表示的图形的交点的极坐标是     查看答案
给出下列四个命题:
①命题“∀x∈R,x2≥0”的否定是“∃x∈R,x2≤0”;
②线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强;
③若a,b∈[0,1],则不等式a2+b2manfen5.com 满分网成立的概率是manfen5.com 满分网
④函数y=log2(x2-ax+2)在[2,+∞)上恒为正,则实数a的取值范围是(-∞,manfen5.com 满分网).
其中真命题的序号是    .(填上所有真命题的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.