已知椭圆
+
=1(a>b>0)的左、右焦点分别是F
1(-c,0)、F
2(c,0),Q是椭圆外的动点,满足|
|=2a.点P是线段F
1Q与该椭圆的交点,点T在线段F
2Q上,并且满足
•
=0,|
|≠0.
(Ⅰ)设x为点P的横坐标,证明|
|=a+
x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F
1MF
2的面积S=b
2.若存在,求∠F
1MF
2的正切值;若不存在,请说明理由.
考点分析:
相关试题推荐
已知数列{a
n}的前n项和为S
n,对一切正整数n,点P
n(n,S
n)都在函数f(x)=x
2+2x的图象上,且过点P
n(n,S
n)的切线的斜率为k
n.
(1)求数列{a
n}的通项公式.
(2)若
,求数列{b
n}的前n项和T
n.
(3)设Q={x|x=k
n,n∈N
*},R={x|x=2a
n,n∈N
*},等差数列{c
n}的任一项c
n∈Q∩R,其中c
1是Q∩R中的最小数,110<c
10<115,求{c
n}的通项公式.
查看答案
已知定义在正实数集上的函数
,g(x)=3a
2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(I)用a表示b,并求b的最大值;
(II)求证:f(x)≥g(x)(x>0).
查看答案
某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为
,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.
(Ⅰ)求此公司决定对该项目投资的概率;
(Ⅱ)记投票结果中“中立”票的张数为随机变量ξ,求ξ的分布列及数学期望Eξ.
查看答案
在长方体ABCD-A
1B
1C
1D
1中(如图),AD=AA
1=1,AB=2,点E是AB上的动点
(1)若直线ED
1与EC垂直,请你确定点E的位置,并求出此时异面直线AD
1与EC所成的角
(2)在(1)的条件下求二面角D
1-EC-D的正切值.
查看答案
已知向量
,函数f(x)=
•
.
(1)若
,求函数f(x)的值;
(2)将函数f(x)的图象按向量
=(m,n)(0<m<π)平移,使得平移后的图象关于原点对称,求向量
.
查看答案