满分5 > 高中数学试题 >

如图,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆...

如图,椭圆中心在坐标原点,F为左焦点,当manfen5.com 满分网时,其离心率为manfen5.com 满分网,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
类比“黄金椭圆”,在黄金双曲线中,当时,|BF|2+|AB|2=|AF|2,由此可知b2+c2+c2=a2+c2+2ac,整理得c2=a2+ac,即e2-e-1=0,解这个方程就能求出黄金双曲线的离心率e. 【解析】 类比“黄金椭圆”,在黄金双曲线中,|OA|=a,|OB|=b,|OF|=c, 当时,|BF|2+|AB|2=|AF|2, ∴b2+c2+c2=a2+c2+2ac, ∵b2=c2-a2,整理得c2=a2+ac, ∴e2-e-1=0,解得 ,或 (舍去). 故黄金双曲线的离心率. 故选A.
复制答案
考点分析:
相关试题推荐
已知x,y∈R,且manfen5.com 满分网,则x+2y的最大值是( )
A.8
B.6
C.4
D.2
查看答案
两相同的正四棱锥组成左图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有( )
manfen5.com 满分网
A.1个
B.2个
C.3个
D.无穷多个
查看答案
一次选拔运动员,测得7名选手的身高(单位cm)分布茎叶图如图,记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为( )
manfen5.com 满分网
A.5
B.6
C.7
D.8
查看答案
已知sinθ+cosθ=-manfen5.com 满分网,则tan(θ-manfen5.com 满分网)=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
定义在R上的奇函数f(x)满足:当x>0时,f(x)=2x+log2x,则在R上的方程f(x)=0的实根个数为( )
A.0
B.1
C.2
D.3
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.