满分5 > 高中数学试题 >

已知等差数列{an2}中,首项a12=1,公差d=1,an>0,n∈N*. (1...

已知等差数列{an2}中,首项a12=1,公差d=1,an>0,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=manfen5.com 满分网,数列{bn}的前n项和为Tn
①求T120
②求证:当n>3时,manfen5.com 满分网manfen5.com 满分网Tn+manfen5.com 满分网
(1)由等差数列{an2}的首项a12和公差d,利用等差数列的通项公式求出{an2}的通项公式,然后根据an大于0,开方可得数列{an}的通项公式; (2)把(1)求得{an}的通项公式代入bn=中,分母有理化化简后即可得到数列{bn}的通项公式,然后列举出数列{bn}的前120项的和,抵消化简可得值. 【解析】 (1)∵{an2}是等差数列,等差d=1,首项a12=1, ∴an2=1+(n-1)×1=n, 又an>0, ∴an=; (2)①∵bn===-, ∴T120=(-1+(-)+…+(-)=-1=10. ②∵,要证当n>3时,>Tn+ 即证,即证2n>2n+2, 因为n>3时,2n=(1+1)n= >=2n+2, ∴当n>3时,>Tn+
复制答案
考点分析:
相关试题推荐
如图,在四边形ABCD中,AC⊥BD,垂足为O,PO⊥平面ABCD,AO=BO=DO=1,CO=PO=2,E是线段PA上的点,AE:AP=1:3.
(1)求证:OE∥平面PBC;
(2)求二面角D-PB-C的大小.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(sin2x,cos2x),manfen5.com 满分网=(cosmanfen5.com 满分网,sinmanfen5.com 满分网),函数f(x)=manfen5.com 满分网+2a(其中a为实常数)
(1)求函数f(x)的最小正周期;
(2)若x∈[0,manfen5.com 满分网]时,函数f(x)的最小值为-2,求a的值.
查看答案
某公司购买了一博览会门票10张,其中甲类票4张,乙类票6张,现从这10张票中任取3张奖励一名员工.
(1)求该员工得到甲类票2张,乙类票1张的概率;
(2)求该员工至少得到甲类票1张的概率,
查看答案
已知圆C:x2+y2+2x+Ey+F=0(E、F∈R),有以下命题:
①E=-4,F=4是曲线C表示圆的充分非必要条件;
②若曲线C与x轴交于两个不同点A(x1,0),B(x2,0),且x1、x2∈[-2,1),则0≤F≤1;
③若曲线C与x轴交于两个不同点A(x1,0),B(x2,0),且x1、x2∈[-2,1),O为坐标原点,则|manfen5.com 满分网|的最大值为2;
④若E=2F,则曲线C表示圆,且该圆面积的最大值为manfen5.com 满分网
其中所有正确命题的序号是    查看答案
已知实数x、y满足manfen5.com 满分网,则2x+y的最大值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.