满分5 > 高中数学试题 >

函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x (Ⅰ)求函数g...

函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|.
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.
(Ⅰ)在函数y=f(x)的图象上任意一点Q(x,y),设关于原点的对称点为P(x,y),再由中点坐标公式,求得Q的坐标代入f(x)=x2+2x即可. (Ⅱ)将f(x)与g(x)的解析式代入转化为2x2-|x-1|≤0,再通过分类讨论去掉绝对值,转化为一元二次不等式求解. (Ⅲ)将f(x)与g(x)的解析式代入可得h(x)=-(1+λ)x2+2(1-λ)x+1,再用二次函数法研究其单调性. 【解析】 (Ⅰ)设函数y=f(x)的图象上任意一点Q(x,y)关于原点的对称点为P(x,y), 则即 ∵点Q(x,y)在函数y=f(x)的图象上 ∴-y=x2-2x,即y=-x2+2x,故g(x)=-x2+2x (Ⅱ)由g(x)≥f(x)-|x-1|,可得2x2-|x-1|≤0 当x≥1时,2x2-x+1≤0,此时不等式无解. 当x<1时,2x2+x-1≤0,解得. 因此,原不等式的解集为. (Ⅲ)h(x)=-(1+λ)x2+2(1-λ)x+1 ①当λ=-1时,h(x)=4x+1在[-1,1]上是增函数,∴λ=-1 ②当λ≠-1时,对称轴的方程为x=. ⅰ)当λ<-1时,,解得λ<-1. ⅱ)当λ>-1时,,解得-1<λ≤0.综上,λ≤0.
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90o,AB=AC=a,AA1=b,点E,F分别在棱BB1,CC1上,且manfen5.com 满分网manfen5.com 满分网.设manfen5.com 满分网
(1)当λ=3时,求异面直线AE与A1F所成角的大小;
(2)当平面AEF⊥平面A1EF时,求λ的值.

manfen5.com 满分网 查看答案
甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,
甲运动员
manfen5.com 满分网
乙运动员
manfen5.com 满分网
若将频率视为概率,回答下列问题,
(1)求甲运动员击中10环的概率
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率
(3)若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上(含9环)的次数,求ξ的分布列及Eξ.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期及图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
查看答案
双曲线manfen5.com 满分网的左,右焦点分别为F1,F2,已知线段F1F2被点(b,0)分成5:1两段,则此双曲线的离心率为    查看答案
(文)已知a>b>0,则manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.