满分5 > 高中数学试题 >

设函数f(x)=ax•lnx(a>0). (Ⅰ)当a=2时,判断函数g(x)=f...

设函数f(x)=ax•lnx(a>0).
(Ⅰ)当a=2时,判断函数g(x)=f(x)-4(x-1)的零点的个数,并且说明理由;
(Ⅱ)若对所有x≥1,都有f(x)≤x2-1,求正数a的取值范围.
(1)将a=2代入写出函数g(x)的解析式后求导数,然后判断出函数g(x)的单调性后再由函数g(x)的最小值小于0可求出函数的零点的个数. (2)先令F(x)=f(x)-(x2-1),在对函数F(x)求导,通过判断函数的单调性来解题. 【解析】 (Ⅰ)当a=2时,g(x)=f(x)-4(x-1)=2xlnx-4x+4的定义域是(0,+∞)求导,得 所以,g(x)在(0,e)上为减函数,在(e,+∞)上为增函数,g(x)min=g(e)=2(2-e)<0. 又g(1)=0,根据g(x)在(0,e)上为减函数, 则g(x)在(0,e)上恰有一个零点; 又g(e2)=4>0,则g(e)g(e2)<0, 所以g(x)在(e,e2)上恰有一个零点, 再根据g(x)在(e,+∞)上为增函数,g(x)在(e,+∞)上恰有一个零点. 综上所述,函数g(x)=f(x)-4(x-1)的零点的个数为2. (Ⅱ)令F(x)=f(x)-(x2-1)=axlnx-x2+1(a>0,x≥1), 求导,再令G(x)=F'(x)=a(lnx+1)-2x, 则 (ⅰ)若0<a≤2,当x≥1时,, 故G(x)在[1,+∞)上为减函数, 所以当x≥1时,G(x)≤G(1)=a-2≤0,即F'(x)≤0, 则F(x)在[1,+∞)上为减函数, 所以当x≥1时,F(x)≤F(1)=0,即f(x)≤x2-1成立; (ⅱ)若a>2,方程G'(x)=0的解为, 则当时,, 故G(x)在上为增函数, 所以当时,G(x)≥G(1)=a-2>0,即F'(x)>0, 则F(x)在上为增函数, 所以当时,F(x)>F(1)=0,即f(x)>x2-1成立,此时不合题意. 综上,满足条件的正数a的取值范围是(0,2].
复制答案
考点分析:
相关试题推荐
如图,椭圆manfen5.com 满分网的左右顶点分别为A、B,左右焦点分别为F1、F2,P为以F1、F2为直径的圆上异于F1、F2的动点,直线PF1、PF2分别交椭圆C于M、N和D、E.
(1)证明:manfen5.com 满分网为定值K;
(2)当K=-2时,问是否存在点P,使得四边形DMEN的面积最小,若存在,求出最小值和P坐标,若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△BC'D,使得平面BC'D⊥平面ABD.
(Ⅰ)求直线BD与平面BEC'所成角的正弦值;
(Ⅱ)求二面角D-BE-C'的余弦值.

manfen5.com 满分网 查看答案
已知数列{an}是递增数列,且满足a3•a5=16,a2+a6=10.
(1)若{an}是等差数列,求数列{an}的前7项和S7
(2)若{an}是等比数列,令manfen5.com 满分网,求数列{bn}的通项公式;
(3)对于(1)中的{an}与(2)中的{bn},令cn=(an+7)bn,求数列{cn}的前n项和Tn
查看答案
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.
manfen5.com 满分网
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从乙流水线上任取5件产品,恰有3件产品为合格品的概率;
(3)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与
两条自动包装流水线的选择有关”.
甲流水线乙流水线  合计
合格品a=b=
不合格品c=d=
合 计n=
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的临界值表供参考:
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
查看答案
在△ABC中,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求角A;           
(Ⅱ)设△ABC的面积为S,且manfen5.com 满分网,求边AC的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.