满分5 > 高中数学试题 >

设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个...

设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(I)若x1=-1,x2=2,求函数f(x)的解析式;
(II)若manfen5.com 满分网,求b的最大值;
(III)设函数g(x)=f'(x)-a(x-x1),x∈(x1,x2),当x2=a时,求证:manfen5.com 满分网
(I)求出f′(x),因为x1、x2是函数f(x)的两个极值点,而x1=-1,x2=2所以得到f′(-1)=0,f′(2)=0代入求出a、b即可得到函数解析式; (II)因为x1、x2是导函数f′(x)=0的两个根,利用根与系数的关系对已知进行变形得到a和b的等式,求出b的范围,设p(a)=3a2(6-a),求出其导函数,利用导数研究函数的增减性得到p(a)的极大值,开方可得b的最大值; (III)因为x1,x2是方程f'(x)=0的两根,所以f'(x)=3a(x-x1)(x-x2).根据两个之积和x2=a求出x1,将x1和导函数代入到g(x)=f'(x)-a(x-x1)求出g(x)的绝对值,根据x的范围化简绝对值,再利用二次函数最值的方法得证即可. 解 (I)∵f(x)=ax3+bx2-a2x(a>0) ∴f'(x)=3ax2+2bx-a2(a>0) 依题意有, ∴. 解得, ∴f(x)=6x3-9x2-36x. (II)∵f'(x)=3ax2+2bx-a2(a>0), 依题意,x1,x2是方程f'(x)=0的两个根,且, ∴(x1+x2)2-2x1x2+2|x1x2|=8. ∴, ∴b2=3a2(6-a). ∵b2≥0, ∴0<a≤6. 设p(a)=3a2(6-a),则p'(a)=-9a2+36a. 由p'(a)>0得0<a<4,由p'(a)<0得a>4. 即:函数p(a)在区间(0,4]上是增函数,在区间[4,6]上是减函数, ∴当a=4时,p(a)有极大值为96, ∴p(a)在(0,6]上的最大值是96, ∴b的最大值为. (III)证明:∵x1,x2是方程f'(x)=0的两根, ∴f'(x)=3a(x-x1)(x-x2). ∵,x2=a, ∴. ∴ ∵x1<x<x2,即. ∴ ∴|g(x)|===. ∴|g(x)|成立.
复制答案
考点分析:
相关试题推荐
已知F1,F2是椭圆C:manfen5.com 满分网=1(a>b>0)的左、右焦点,点P(-manfen5.com 满分网,1)在椭圆上,线段PF2与y轴的交点M满足manfen5.com 满分网=manfen5.com 满分网
(1)求椭圆C的方程.
(2)椭圆C上任一动点M(x,y)关于直线y=2x的对称点为M1(x1,y1),求3x1-4y1的取值范围.
查看答案
已知数列{an} 的前n项和为Sn,且Sn=n2.数列{bn}为等比数列,且b1=1,b4=8.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足cn=manfen5.com 满分网,求数列{cn}的前n项和Tn
查看答案
如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2,manfen5.com 满分网,D、E分别为AA1、A1C的中点.
(Ⅰ)求证:A1C⊥平面ABC;
(Ⅱ)求平面BDE与平面ABC所成锐二面角的余弦值.

manfen5.com 满分网 查看答案
小白鼠被注射某种药物后,只会表现为以下三种症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝.若出现三种症状的概率依次为manfen5.com 满分网,现对三只小白鼠注射这种药物.
(I)求这三只小白鼠表现症状互不相同的概率;
(II)用ξ表示三只小白鼠共表现症状的种数,求ξ的颁布列及数学期望.
查看答案
已知函数f(x)=sin2manfen5.com 满分网)+manfen5.com 满分网sin(manfen5.com 满分网)cos(manfen5.com 满分网)-manfen5.com 满分网
(Ⅰ)求f(x)的值域;
(Ⅱ)若f(x)(x>0)的图象与直线y=manfen5.com 满分网交点的横坐标由小到大依次是x1,x2…,xn,求数列{xn}的前2n项的和.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.